Shallow-Deep Collaborative Learning for Unsupervised Visible-Infrared Person Re-Identification

被引:8
|
作者
Yang, Bin [1 ]
Chen, Jun [1 ]
Ye, Mang [1 ]
机构
[1] Wuhan Univ, Natl Engn Res Ctr Multimedia Software, Sch Comp Sci, Hubei Luojia Lab, Wuhan, Peoples R China
基金
中国国家自然科学基金;
关键词
D O I
10.1109/CVPR52733.2024.01596
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Unsupervised visible-infrared person re-identification ( US-VI-ReID) centers on learning a cross-modality retrieval model without labels, reducing the reliance on expensive cross-modality manual annotation. Previous US-VIReID works gravitate toward learning cross-modality information with the deep features extracted from the ultimate layer. Nevertheless, interfered by the multiple discrepancies, solely relying on deep features is insufficient for accurately learning modality-invariant features, resulting in negative optimization. The shallow feature from the shallow layers contains nuanced detail information, which is critical for effective cross-modality learning but is disregarded regrettably by the existing methods. To address the above issues, we design a Shallow-Deep Collaborative Learning (SDCL) framework based on the transformer with shallow-deep contrastive learning, incorporating Collaborative Neighbor Learning (CNL) and Collaborative Ranking Association (CRA) module. Specifically, CNL unveils the intrinsic homogeneous and heterogeneous collaboration which are harnessed for neighbor alignment, enhancing the robustness in a dynamic manner. Furthermore, CRA associates the cross-modality labels with the ranking association between shallow and deep features, furnishing valuable supervision for cross-modality learning. Extensive experiments validate the superiority of our method, even outperforming certain supervised counterparts.
引用
收藏
页码:16870 / 16879
页数:10
相关论文
共 50 条
  • [31] Dual-Semantic Consistency Learning for Visible-Infrared Person Re-Identification
    Zhang, Yiyuan
    Kang, Yuhao
    Zhao, Sanyuan
    Shen, Jianbing
    IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, 2023, 18 : 1554 - 1565
  • [32] Learning Modality-Specific Representations for Visible-Infrared Person Re-Identification
    Feng, Zhanxiang
    Lai, Jianhuang
    Xie, Xiaohua
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 579 - 590
  • [33] Modality-agnostic learning for robust visible-infrared person re-identification
    Gong, Shengrong
    Li, Shuomin
    Xie, Gengsheng
    Yao, Yufeng
    Zhong, Shan
    SIGNAL IMAGE AND VIDEO PROCESSING, 2025, 19 (03)
  • [34] Shape-Erased Feature Learning for Visible-Infrared Person Re-Identification
    Feng, Jiawei
    Wu, Ancong
    Zhen, Wei-Shi
    2023 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2023, : 22752 - 22761
  • [35] Unbiased Feature Learning with Causal Intervention for Visible-Infrared Person Re-Identification
    Yuan, Bo wen
    Lu, Jiahao
    You, Sisi
    Bao, Bing-kun
    ACM TRANSACTIONS ON MULTIMEDIA COMPUTING COMMUNICATIONS AND APPLICATIONS, 2024, 20 (10)
  • [36] Cross-modality consistency learning for visible-infrared person re-identification
    Shao, Jie
    Tang, Lei
    JOURNAL OF ELECTRONIC IMAGING, 2022, 31 (06)
  • [37] Learning dual attention enhancement feature for visible-infrared person re-identification
    Zhang, Guoqing
    Zhang, Yinyin
    Zhang, Hongwei
    Chen, Yuhao
    Zheng, Yuhui
    JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2024, 99
  • [38] Multi-Stage Auxiliary Learning for Visible-Infrared Person Re-Identification
    Zhang, Huadong
    Cheng, Shuli
    Du, Anyu
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (11) : 12032 - 12047
  • [39] Text-augmented Multi-Modality contrastive learning for unsupervised visible-infrared person re-identification
    Sun, Rui
    Huang, Guoxi
    Wang, Xuebin
    Du, Yun
    Zhang, Xudong
    IMAGE AND VISION COMPUTING, 2024, 152
  • [40] Modality Unifying Network for Visible-Infrared Person Re-Identification
    Yu, Hao
    Cheng, Xu
    Peng, Wei
    Liu, Weihao
    Zhao, Guoying
    2023 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2023), 2023, : 11151 - 11161