On the degenerate Whittaker space for GL4(o2)

被引:0
作者
Parashar, Ankita [1 ]
Patel, Shiv Prakash [1 ,2 ]
机构
[1] IIT Delhi, Dept Math, New Delhi 110016, India
[2] IIT Dharwad, Dept Math, Dharwad 580011, India
关键词
Degenerate Whittaker space; Prasad's conjecture; Regular representations; GENERAL LINEAR-GROUPS; REGULAR CHARACTERS; REPRESENTATIONS; MODELS; A(N);
D O I
10.1016/j.jpaa.2025.107921
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let o2 be a finite principal ideal local ring of length 2. For a representation pi of GL4(o2), the degenerate Whittaker space pi N, psi is a representation of GL2(o2). We describe pi N,psi explicitly for an irreducible strongly cuspidal representation pi of GL4(o2). This description verifies a special case of a conjecture of Prasad. We also prove that pi N, psi is a multiplicity free representation. (c) 2025 Elsevier B.V. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页数:29
相关论文
共 19 条
  • [1] Aubert A.M., Onn U., Prasad A., Stasinski A., On cuspidal representations of general linear groups over discrete valuation rings, Isr. J. Math., 175, pp. 391-420, (2010)
  • [2] Balasubramanian K., Dangodara A., Khurana H., On a twisted Jacquet module of GL(2n) over a finite field, (2022)
  • [3] Balasubramanian K., Khurana H., A certain twisted Jacquet module of GL(4) over a finite field, J. Pure Appl. Algebra, 226, 5, (2022)
  • [4] Balasubramanian K., Khurana H., A certain twisted Jacquet module of GL(6) over a finite field: the rank 2 case, J. Pure Appl. Algebra, 228, 6, pp. 14-26, (2024)
  • [5] Fulton W., Harris J., Representation Theory a First Course, (1991)
  • [6] Gan W.T., Gross B.H., Prasad D., Symplectic local root numbers, central critical L values, and restriction problems in the representation theory of classical groups, Astérisque, 346, pp. 1-109, (2012)
  • [7] Gerardin P., Construction de Séries Discrètes p-Adiques, Lecture Notes in Mathematics, 462, (1975)
  • [8] Green J.A., The characters of the finite general linear groups, Trans. Am. Math. Soc., 80, pp. 402-447, (1955)
  • [9] Hill G., Regular elements and regular characters of GL<sub>n</sub>(o), J. Algebra, 174, pp. 610-635, (1995)
  • [10] Krakovski R., Onn U., Singla P., Regular characters of groups of type A<sub>n</sub> over discrete valuation rings, J. Algebra, 496, pp. 116-137, (2018)