共 31 条
Low-energy, high-accuracy convolutional network inference in 3D crosspoint (3DXP) arrays
被引:0
|作者:
Carletti, F.
[1
,2
]
Farronato, M.
[1
,2
]
Lepri, N.
[1
,2
]
Tortorelli, I
[3
]
Pirovano, A.
[3
]
Fantini, P.
[3
]
Ielmini, D.
[1
,2
]
机构:
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] IU NET, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Micron Technol Inc, Via Trento 26, I-20871 Vimercate, MB, Italy
来源:
2024 50TH IEEE EUROPEAN SOLID-STATE ELECTRONICS RESEARCH CONFERENCE, ESSERC 2024
|
2024年
基金:
欧洲研究理事会;
关键词:
In-memory computing (IMC);
3D crosspoint (3DXP);
phase change memory (PCM);
artificial intelligence (AI);
convolutional neural network (CNN);
IMPACT;
D O I:
10.1109/ESSERC62670.2024.10719497
中图分类号:
TM [电工技术];
TN [电子技术、通信技术];
学科分类号:
0808 ;
0809 ;
摘要:
In-memory computing (IMC) has emerged as a promising solution for artificial intelligence (AI) accelerators thanks to the reduced data movement and improved parallelism in the crosspoint memory array. A key issue of IMC is the excessive current of the memory elements causing energy inefficiency and computing inaccuracy due to IR drop. This work reports a hardware demonstration of IMC by a 3D crosspoint (3DXP) array of phase change memory (PCM). We experimentally demonstrate feature extraction, a typical layer of convolutional neural networks (CNNs) and simulate inference of a LeNet CNN for handwritten digits classification (MNIST database). Low energy is enabled by subthreshold operated 3DXP cells, while the high accuracy is supported by precise program-verify algorithms. The impact of read 1/f noise is discussed via measurements and simulations.
引用
收藏
页码:412 / 415
页数:4
相关论文