Low-energy, high-accuracy convolutional network inference in 3D crosspoint (3DXP) arrays

被引:0
|
作者
Carletti, F. [1 ,2 ]
Farronato, M. [1 ,2 ]
Lepri, N. [1 ,2 ]
Tortorelli, I [3 ]
Pirovano, A. [3 ]
Fantini, P. [3 ]
Ielmini, D. [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] IU NET, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Micron Technol Inc, Via Trento 26, I-20871 Vimercate, MB, Italy
来源
2024 50TH IEEE EUROPEAN SOLID-STATE ELECTRONICS RESEARCH CONFERENCE, ESSERC 2024 | 2024年
基金
欧洲研究理事会;
关键词
In-memory computing (IMC); 3D crosspoint (3DXP); phase change memory (PCM); artificial intelligence (AI); convolutional neural network (CNN); IMPACT;
D O I
10.1109/ESSERC62670.2024.10719497
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing (IMC) has emerged as a promising solution for artificial intelligence (AI) accelerators thanks to the reduced data movement and improved parallelism in the crosspoint memory array. A key issue of IMC is the excessive current of the memory elements causing energy inefficiency and computing inaccuracy due to IR drop. This work reports a hardware demonstration of IMC by a 3D crosspoint (3DXP) array of phase change memory (PCM). We experimentally demonstrate feature extraction, a typical layer of convolutional neural networks (CNNs) and simulate inference of a LeNet CNN for handwritten digits classification (MNIST database). Low energy is enabled by subthreshold operated 3DXP cells, while the high accuracy is supported by precise program-verify algorithms. The impact of read 1/f noise is discussed via measurements and simulations.
引用
收藏
页码:412 / 415
页数:4
相关论文
共 31 条
  • [21] Development of automated feature extraction and convolutional neural network optimization for real-time warping monitoring in 3D printing
    Xie, Jiarui
    Saluja, Aditya
    Rahimizadeh, Amirmohammad
    Fayazbakhsh, Kazem
    INTERNATIONAL JOURNAL OF COMPUTER INTEGRATED MANUFACTURING, 2022, 35 (08) : 813 - 830
  • [22] Detection of Parkinson's Disease from 3T T1 Weighted MRI Scans Using 3D Convolutional Neural Network
    Chakraborty, Sabyasachi
    Aich, Satyabrata
    Kim, Hee-Cheol
    DIAGNOSTICS, 2020, 10 (06)
  • [23] Combining 3D Radiative Transfer Model and Convolutional Neural Network to Accurately Estimate Forest Canopy Cover From Very High-Resolution Satellite Images
    Jin, Decai
    Qi, Jianbo
    Huang, Huaguo
    Li, Linyuan
    IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2021, 14 : 10953 - 10963
  • [24] Analysis of High-Temperature Data Retention in 3D Floating-Gate nand Flash Memory Arrays
    Malavena, Gerardo
    Giulianini, Mattia
    Chiavarone, Luca
    Spinelli, Alessandro S.
    Compagnoni, Christian Monzio
    IEEE JOURNAL OF THE ELECTRON DEVICES SOCIETY, 2023, 11 : 524 - 530
  • [25] No-Reference 3D Point Cloud Quality Assessment Using Multi-View Projection and Deep Convolutional Neural Network
    Bourbia, Salima
    Karine, Ayoub
    Chetouani, Aladine
    El Hassouni, Mohammed
    Jridi, Maher
    IEEE ACCESS, 2023, 11 : 26759 - 26772
  • [26] A Visible Light 3D Positioning System for Underground Mines Based on Convolutional Neural Network Combining Inception Module and Attention Mechanism
    Deng, Bo
    Wang, Fengying
    Qin, Ling
    Hu, Xiaoli
    PHOTONICS, 2023, 10 (08)
  • [27] Experimental and numerical investigations of low energy/velocity impact damage generated in 3D woven composite with polymer matrix
    Elias, A.
    Laurin, F.
    Kaminski, M.
    Gornet, L.
    COMPOSITE STRUCTURES, 2017, 159 : 228 - 239
  • [28] Prediction of epidermal growth factor receptor (EGFR) mutation status in lung adenocarcinoma patients on computed tomography (CT) images using 3-dimensional (3D) convolutional neural network
    Zhang, Guojin
    Shang, Lan
    Cao, Yuntai
    Zhang, Jing
    Li, Shenglin
    Qian, Rong
    Liu, Huan
    Zhang, Zhuoli
    Pu, Hong
    Man, Qiong
    Kong, Weifang
    QUANTITATIVE IMAGING IN MEDICINE AND SURGERY, 2024, 14 (08) : 6048 - 6059
  • [29] A 3D multidirectional piezoelectric energy harvester using rope-driven mechanism for low frequency and ultralow intensity vibration environment
    Zhang, Jinhui
    Lin, Maoyu
    Zhou, Wei
    Tang, Lihua
    Qin, Lifeng
    SMART MATERIALS AND STRUCTURES, 2022, 31 (02)
  • [30] Numerical Study on the Prediction of "Sweet Spots'' in a Low Efficiency-Tight Gas Sandstone Reservoir Based on a 3D Strain Energy Model
    Yin, Shuai
    Gao, Zhiyou
    IEEE ACCESS, 2019, 7 : 117391 - 117402