Low-energy, high-accuracy convolutional network inference in 3D crosspoint (3DXP) arrays

被引:0
|
作者
Carletti, F. [1 ,2 ]
Farronato, M. [1 ,2 ]
Lepri, N. [1 ,2 ]
Tortorelli, I [3 ]
Pirovano, A. [3 ]
Fantini, P. [3 ]
Ielmini, D. [1 ,2 ]
机构
[1] Politecn Milan, Dipartimento Elettron Informaz & Bioingn DEIB, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[2] IU NET, Piazza Leonardo da Vinci 32, I-20133 Milan, Italy
[3] Micron Technol Inc, Via Trento 26, I-20871 Vimercate, MB, Italy
来源
2024 50TH IEEE EUROPEAN SOLID-STATE ELECTRONICS RESEARCH CONFERENCE, ESSERC 2024 | 2024年
基金
欧洲研究理事会;
关键词
In-memory computing (IMC); 3D crosspoint (3DXP); phase change memory (PCM); artificial intelligence (AI); convolutional neural network (CNN); IMPACT;
D O I
10.1109/ESSERC62670.2024.10719497
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In-memory computing (IMC) has emerged as a promising solution for artificial intelligence (AI) accelerators thanks to the reduced data movement and improved parallelism in the crosspoint memory array. A key issue of IMC is the excessive current of the memory elements causing energy inefficiency and computing inaccuracy due to IR drop. This work reports a hardware demonstration of IMC by a 3D crosspoint (3DXP) array of phase change memory (PCM). We experimentally demonstrate feature extraction, a typical layer of convolutional neural networks (CNNs) and simulate inference of a LeNet CNN for handwritten digits classification (MNIST database). Low energy is enabled by subthreshold operated 3DXP cells, while the high accuracy is supported by precise program-verify algorithms. The impact of read 1/f noise is discussed via measurements and simulations.
引用
收藏
页码:412 / 415
页数:4
相关论文
共 31 条
  • [1] Mapping Systolic Arrays onto 3D Circuit Structures: Accelerating Convolutional Neural Network Inference
    Kung, H. T.
    McDanel, Bradley
    Zhang, Sai Qian
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL WORKSHOP ON SIGNAL PROCESSING SYSTEMS (SIPS), 2018, : 330 - 336
  • [2] 3D Face Reconstruction Based on Convolutional Neural Network
    Li Fangmin
    Chen Ke
    Liu Xinhua
    2017 10TH INTERNATIONAL CONFERENCE ON INTELLIGENT COMPUTATION TECHNOLOGY AND AUTOMATION (ICICTA 2017), 2017, : 71 - 74
  • [3] 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising
    Zou, Bei-Ji
    Guo, Yun-Di
    He, Qi
    Ouyang, Ping-Bo
    Liu, Ke
    Chen, Zai-Liang
    JOURNAL OF COMPUTER SCIENCE AND TECHNOLOGY, 2018, 33 (04) : 838 - 848
  • [4] 3D Filtering by Block Matching and Convolutional Neural Network for Image Denoising
    Bei-Ji Zou
    Yun-Di Guo
    Qi He
    Ping-Bo Ouyang
    Ke Liu
    Zai-Liang Chen
    Journal of Computer Science and Technology, 2018, 33 : 838 - 848
  • [5] A Convolutional Neural Network-Based Method for 3D Object Detection
    Li Y.
    Shi L.
    Wan W.
    Zhao Q.
    Shanghai Jiaotong Daxue Xuebao/Journal of Shanghai Jiaotong University, 2018, 52 (01): : 7 - 12
  • [6] Kernel Mapping Methods of Convolutional Neural Network in 3D NAND Flash Architecture
    Song, Min Suk
    Hwang, Hwiho
    Lee, Geun Ho
    Ahn, Suhyeon
    Hwang, Sungmin
    Kim, Hyungjin
    ELECTRONICS, 2023, 12 (23)
  • [7] High-Density Surface EMG-Based Gesture Recognition Using a 3D Convolutional Neural Network
    Chen, Jiangcheng
    Bi, Sheng
    Zhang, George
    Cao, Guangzhong
    SENSORS, 2020, 20 (04)
  • [8] Automatic detection of brachytherapy seeds in 3D ultrasound images using a convolutional neural network
    Golshan, Maryam
    Karimi, Davood
    Mahdavi, Sara
    Lobo, Julio
    Peacock, Michael
    Salcudean, Septimiu E.
    Spadinger, Ingrid
    PHYSICS IN MEDICINE AND BIOLOGY, 2020, 65 (03)
  • [9] Predicting 3D particles shapes based on 2D images by using convolutional neural network
    Giannis, Kostas
    Thon, Christoph
    Yang, Guoqing
    Kwade, Arno
    Schilde, Carsten
    POWDER TECHNOLOGY, 2024, 432
  • [10] Development of a Deep Convolutional Neural Network for the Prediction of Pavement Roughness from 3D Images
    Abohamer, Hossam
    Elseifi, Mostafa
    Dhakal, Nirmal
    Zhang, Zhongjie
    Fillastre, Christophe N.
    JOURNAL OF TRANSPORTATION ENGINEERING PART B-PAVEMENTS, 2021, 147 (04)