Urban tree species classification based on multispectral airborne LiDAR

被引:0
作者
Hu, Pei-Lun [1 ,2 ]
Chen, Yu-Wei [1 ]
Imangholiloo, Mohammad [2 ]
Holopainen, Markus [2 ]
Wang, Yi-Cheng [3 ]
Hyyppae, Juha [1 ]
机构
[1] Finnish Geospatial Res Inst, Dept Remote Sensing & Photogrammetry, Espoo 02150, Finland
[2] Univ Helsinki, Dept Forest Sci, Helsinki 00014, Finland
[3] Adv Laser Technol Lab Anhui Prov, Hefei 230037, Peoples R China
关键词
multispectral airborne LiDAR; tree species classification; STEM VOLUME; HEIGHT; FORESTS; GROWTH;
D O I
10.11972/j.issn.1001-9014.2025.02.008
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
Urban tree species provide various essential ecosystem services in cities, such as regulating urban temperatures, reducing noise, capturing carbon, and mitigating the urban heat island effect. The quality of these ser & hybull; vices is influenced by species diversity, tree health, and the distribution and composition of trees. Traditionally, data on urban trees has been collected through field surveys and manual interpretation of remote sensing images. In this study, we evaluated the effectiveness of multispectral airborne laser scanning (ALS) data in classifying 24 common urban roadside tree species in Espoo, Finland. Tree crown structure information, intensity features, and spectral data were used for classification. Eight different machine learning algorithms were tested, with the extra trees (ET) algorithm performing the best, achieving an overall accuracy of 71. 7% using multispectral LiDAR data. This result highlights that integrating structural and spectral information within a single framework can improve classification accuracy. Future research will focus on identifying the most important features for species classification and developing algorithms with greater efficiency and accuracy.
引用
收藏
页码:197 / 202
页数:6
相关论文
共 50 条
  • [21] Mapping urban tree species using integrated airborne hyperspectral and LiDAR remote sensing data
    Liu, Luxia
    Coops, Nicholas C.
    Aven, Neal W.
    Pang, Yong
    REMOTE SENSING OF ENVIRONMENT, 2017, 200 : 170 - 182
  • [22] CNN-BASED TREE SPECIES CLASSIFICATION USING AIRBORNE LIDAR DATA AND HIGH-RESOLUTION SATELLITE IMAGE
    Li, Hui
    Hu, Baoxin
    Li, Qian
    Jing, Linhai
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2679 - 2682
  • [23] Tree species classification and estimation of stem volume and DBH based on single tree extraction by exploiting airborne full-waveform LiDAR data
    Yao, Wei
    Krzystek, Peter
    Heurich, Marco
    REMOTE SENSING OF ENVIRONMENT, 2012, 123 : 368 - 380
  • [24] Tree-Species Classification and Individual-Tree-Biomass Model Construction Based on Hyperspectral and LiDAR Data
    Qiao, Yifan
    Zheng, Guang
    Du, Zihan
    Ma, Xiao
    Li, Jiarui
    Moskal, L. Monika
    REMOTE SENSING, 2023, 15 (05)
  • [25] Classification of Individual Tree Species Using UAV LiDAR Based on Transformer
    Sun, Peng
    Yuan, Xuguang
    Li, Dan
    FORESTS, 2023, 14 (03):
  • [26] Detection of urban features by multilevel classification of multispectral airborne LiDAR data fused with very high-resolution images
    Megahed, Yasmine
    Yan, Wai Yeung
    Shaker, Ahmed
    JOURNAL OF APPLIED REMOTE SENSING, 2021, 15 (04)
  • [27] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Takeshi Sasaki
    Junichi Imanishi
    Keiko Ioki
    Yukihiro Morimoto
    Katsunori Kitada
    Landscape and Ecological Engineering, 2012, 8 : 157 - 171
  • [28] CNN-Based Individual Tree Species Classification Using High-Resolution Satellite Imagery and Airborne LiDAR Data
    Li, Hui
    Hu, Baoxin
    Li, Qian
    Jing, Linhai
    FORESTS, 2021, 12 (12):
  • [29] Object-based classification of land cover and tree species by integrating airborne LiDAR and high spatial resolution imagery data
    Sasaki, Takeshi
    Imanishi, Junichi
    Ioki, Keiko
    Morimoto, Yukihiro
    Kitada, Katsunori
    LANDSCAPE AND ECOLOGICAL ENGINEERING, 2012, 8 (02) : 157 - 171
  • [30] Hybrid Ensemble Classification of Tree Genera Using Airborne LiDAR Data
    Ko, Connie
    Sohn, Gunho
    Remmel, Tarmo K.
    Miller, John
    REMOTE SENSING, 2014, 6 (11) : 11225 - 11243