Design guidance for ferrites: Insights from density functional theory on magnetic properties

被引:0
作者
Punyapu, Venkata Rohit [1 ,2 ]
Zhu, Jiazhou [1 ]
Meza-Morales, Paul [1 ]
Chaluvadi, Anish [1 ]
Mefford, O. Thompson [3 ,4 ]
Getman, Rachel B. [1 ,2 ]
机构
[1] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA
[2] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43220 USA
[3] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[4] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Non-stoichiometric ferrite; Magnetic saturation; Magnetocrystalline anisotropy; Density Functional Theory (DFT); Materials screening; Computational guidance; TOTAL-ENERGY CALCULATIONS; MAGNETOCRYSTALLINE ANISOTROPY; MRI CONTRAST; NANOPARTICLES; NANO; ZN; 1ST-PRINCIPLES; TEMPERATURE; OXIDE; HARD;
D O I
10.1016/j.jmmm.2025.172933
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A grand challenge in materials research is identifying the relationship between composition and performance. Herein, we explore this relationship for magnetic properties, specifically magnetic saturation (Ms) and magnetocrystalline anisotropy energy (K) of ferrites. Ferrites are materials derived from magnetite (chemical formula = Fe3O4) that comprise metallic elements such as Fe, Mn, Ni, Co, Cu and Zn. Experimentally, synthesizing and characterizing ferrites is time consuming. Further, selection of compositions to achieve particular magnetic properties currently relies on intuition. To address this, in this work, density functional theory (DFT) is used to predict Ms and K for 571 ferrite structures. These structures are primarily double-substituted non-stoichiometric ferrites with formulae M1xM2yFe3-x-yO4, where M1 and M2 can be Mn, Ni, Co, Cu and/or Zn and 0 <= x <= 1 and y = 1-x. Calculated magnetic properties for the structures in this study vary from 0.04 x 105 to 9.6 x 105 A m-1 for Ms and from 0.02 x 105 to 14.08 x 105 J m-3 for K. All structures are made publicly available in a FAIR database.
引用
收藏
页数:11
相关论文
共 105 条
  • [81] Blochl P.E., Projector augmented-wave method, Phys. Rev. B, 50, pp. 17953-17979, (1994)
  • [82] de Berg K.C., Chapman K.J., Determination of the magnetic moments of transition metal complexes using rare earth magnets, J. Chem. Educ., 78, (2001)
  • [83] Jeng H.-T., Guo G.Y., First-principles investigations of the electronic structure and magnetocrystalline anisotropy in strained magnetite Fe<sub>3</sub>O<sub>4</sub>, Phys. Rev. B, 65, (2002)
  • [84] Aragon R., Cubic magnetic anisotropy of nonstoichiometric magnetite, Phys. Rev. B, 46, pp. 5334-5338, (1992)
  • [85] Borhan A.I., Iordan A.R., Palamaru M.N., Correlation between structural, magnetic and electrical properties of nanocrystalline Al<sup>3+</sup> substituted zinc ferrite, Mater. Res. Bull., 48, pp. 2549-2556, (2013)
  • [86] Rahmanian Koshkaki S., Allahyari Z., Oganov A.R., Solozhenko V.L., Polovov I.B., Alexander S., Belozerov A.A., Katanin V.I., Anisimov E.V., Tikhonov G.-R., Qian K.V., Maksimtsev A.S., Mukhamadeev A.V., Chukin A.V., Korolev N.V., Mushnikov H.L., Computational prediction of new magnetic materials, J. Chem. Phys., 157, (2022)
  • [87] Oganov A.R., Pickard C.J., Zhu Q., Needs R.J., Structure prediction drives materials discovery, Nat. Rev. Mater., 4, pp. 331-348, (2019)
  • [88] Salehizadeh S.A., Costa B.F.O., Sanguino P., Rodrigues V.H., Greneche J.-M., Cavaleiro A., Valente M.A., Quantitative determination of surface spins contribution of magnetization, anisotropy constant, and cation distribution of manganese ferrite-silica nanocomposite, Mater. Sci. Eng. B, 284, (2022)
  • [89] An S.Y., Kim I.S., Son S.H., Song S.Y., Hahn J.W., Hyun S.W., Kim C.M., Kim C.S., Magnetic properties of Cu<sup>2+</sup> substituted Co-ferrite, Thin Solid Films, 519, pp. 8296-8298, (2011)
  • [90] Nejati K., Zabihi R., Preparation and magnetic properties of nano size nickel ferrite particles using hydrothermal method, Chem. Cent. J., 6, (2012)