Design guidance for ferrites: Insights from density functional theory on magnetic properties

被引:0
作者
Punyapu, Venkata Rohit [1 ,2 ]
Zhu, Jiazhou [1 ]
Meza-Morales, Paul [1 ]
Chaluvadi, Anish [1 ]
Mefford, O. Thompson [3 ,4 ]
Getman, Rachel B. [1 ,2 ]
机构
[1] Clemson Univ, Dept Chem & Biomol Engn, Clemson, SC 29634 USA
[2] Ohio State Univ, William G Lowrie Dept Chem & Biomol Engn, Columbus, OH 43220 USA
[3] Clemson Univ, Dept Mat Sci & Engn, Clemson, SC 29634 USA
[4] Clemson Univ, Dept Bioengn, Clemson, SC 29634 USA
基金
美国国家科学基金会;
关键词
Non-stoichiometric ferrite; Magnetic saturation; Magnetocrystalline anisotropy; Density Functional Theory (DFT); Materials screening; Computational guidance; TOTAL-ENERGY CALCULATIONS; MAGNETOCRYSTALLINE ANISOTROPY; MRI CONTRAST; NANOPARTICLES; NANO; ZN; 1ST-PRINCIPLES; TEMPERATURE; OXIDE; HARD;
D O I
10.1016/j.jmmm.2025.172933
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A grand challenge in materials research is identifying the relationship between composition and performance. Herein, we explore this relationship for magnetic properties, specifically magnetic saturation (Ms) and magnetocrystalline anisotropy energy (K) of ferrites. Ferrites are materials derived from magnetite (chemical formula = Fe3O4) that comprise metallic elements such as Fe, Mn, Ni, Co, Cu and Zn. Experimentally, synthesizing and characterizing ferrites is time consuming. Further, selection of compositions to achieve particular magnetic properties currently relies on intuition. To address this, in this work, density functional theory (DFT) is used to predict Ms and K for 571 ferrite structures. These structures are primarily double-substituted non-stoichiometric ferrites with formulae M1xM2yFe3-x-yO4, where M1 and M2 can be Mn, Ni, Co, Cu and/or Zn and 0 <= x <= 1 and y = 1-x. Calculated magnetic properties for the structures in this study vary from 0.04 x 105 to 9.6 x 105 A m-1 for Ms and from 0.02 x 105 to 14.08 x 105 J m-3 for K. All structures are made publicly available in a FAIR database.
引用
收藏
页数:11
相关论文
共 105 条
  • [1] Nandhini G., Shobana M.K., Role of ferrite nanoparticles in hyperthermia applications, J. Magn. Magn. Mater., 552, (2022)
  • [2] Lee J.-H., Huh Y.-M., Jun Y., Seo J., Jang J., Song H.-T., Kim S., Cho E.-J., Yoon H.-G., Suh J.-S., Cheon J., Artificially engineered magnetic nanoparticles for ultra-sensitive molecular imaging, Nat. Med., 13, pp. 95-99, (2007)
  • [3] Hu Z., Kanagaraj J., Hong H., Yang K., Ji X., Fan Q.H., Kharel P., Characterization of ferrite magnetic nanoparticle modified polymeric composites by modeling, J. Magn. Magn. Mater., 493, (2020)
  • [4] Nikitin A.A., Arkhipov V.A., Chmelyuk N.S., Ivanova A.V., Vodopyanov S.S., Garanina A.S., Soldatov M.A., Gritsai M.A., Cherepanov V.M., Barbotina N.N., Sviridenkova N.V., Savchenko A.G., Abakumov M.A., Multifunctional anisotropic rod-shaped CoFe<sub>2</sub>O<sub>4</sub> nanoparticles for magnetic resonance imaging and magnetomechanical therapy, ACS Appl. Nano Mater., 6, pp. 14540-14551, (2023)
  • [5] Spaldin N.A., Magnetic Materials, (2010)
  • [6] Mattei J.-L., Le Guen E., Chevalier A., Tarot A.-C., Experimental determination of magnetocrystalline anisotropy constants and saturation magnetostriction constants of NiZn and NiZnCo ferrites intended to be used for antennas miniaturization, J. Magn. Magn. Mater., 374, pp. 762-768, (2015)
  • [7] Cui J., Kramer M., Zhou L., Liu F., Gabay A., Hadjipanayis G., Balasubramanian B., Sellmyer D., Current progress and future challenges in rare-earth-free permanent magnets, Acta Mater., 158, pp. 118-137, (2018)
  • [8] Marbaix J., Mille N., Lacroix L.-M., Asensio J.M., Fazzini P.-F., Soulantica K., Carrey J., Chaudret B., Tuning the composition of FeCo nanoparticle heating agents for magnetically induced catalysis, ACS Appl. Nano Mater., 3, pp. 3767-3778, (2020)
  • [9] Adogwa A., Chukwu E., Malaj A., Punyapu V.R., Chamness O., Glisson N., Bruce B., Lee S., Zachman M.J., Bruce D.A., Getman R.B., Mefford O.T., Yang M., Catalytic reaction triggered by magnetic induction heating mechanistically distinguishes itself from the standard thermal reaction, ACS Catal., 14, pp. 4008-4017, (2024)
  • [10] Meffre A., Mehdaoui B., Connord V., Carrey J., Fazzini P.F., Lachaize S., Respaud M., Chaudret B., Complex nano-objects displaying both magnetic and catalytic properties: a proof of concept for magnetically induced heterogeneous catalysis, Nano Lett., 15, pp. 3241-3248, (2015)