ROLL: Visual Self-Supervised Reinforcement Learning with Object Reasoning

被引:0
|
作者
Wang, Yufei [1 ]
Narasimhan, Gautham Narayan [1 ]
Lin, Xingyu [1 ]
Okorn, Brian [1 ]
Held, David [1 ]
机构
[1] Carnegie Mellon Univ, Pittsburgh, PA 15213 USA
来源
基金
美国国家科学基金会;
关键词
Self-supervised Reinforcement Learning; Object Reasoning; Robotic Manipulation;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Current image-based reinforcement learning (RL) algorithms typically operate on the whole image without performing object-level reasoning. This leads to inefficient goal sampling and ineffective reward functions. In this paper, we improve upon previous visual self-supervised RL by incorporating object-level reasoning and occlusion reasoning. Specifically, we use unknown object segmentation to ignore distractors in the scene for better reward computation and goal generation; we further enable occlusion reasoning by employing a novel auxiliary loss and training scheme. We demonstrate that our proposed algorithm, ROLL (Reinforcement learning with Object Level Learning), learns dramatically faster and achieves better final performance compared with previous methods in several simulated visual control tasks. Project video and code are available at https://sites.google.com/andrew.cmu.edu/roll
引用
收藏
页码:1030 / 1048
页数:19
相关论文
共 50 条
  • [1] Self-Supervised Reinforcement Learning for Active Object Detection
    Fang, Fen
    Liang, Wenyu
    Wu, Yan
    Xu, Qianli
    Lim, Joo-Hwee
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2022, 7 (04): : 10224 - 10231
  • [2] Visual Reinforcement Learning With Self-Supervised 3D Representations
    Ze, Yanjie
    Hansen, Nicklas
    Chen, Yinbo
    Jain, Mohit
    Wang, Xiaolong
    IEEE ROBOTICS AND AUTOMATION LETTERS, 2023, 8 (05) : 2890 - 2897
  • [3] Self-supervised reinforcement learning for multi-step object manipulation skills
    Wang, Jiaqi
    Chen, Chuxin
    Liu, Jingwei
    Du, Guanglong
    Zhu, Xiaojun
    Guan, Quanlong
    Qiu, Xiaojian
    INDUSTRIAL ROBOT-THE INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH AND APPLICATION, 2025,
  • [4] Self-Supervised Relational Reasoning for Representation Learning
    Patacchiola, Massimiliano
    Storkey, Amos
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33
  • [5] Knowledge-aware reasoning with self-supervised reinforcement learning for explainable recommendation in MOOCs
    Yuanguo Lin
    Wei Zhang
    Fan Lin
    Wenhua Zeng
    Xiuze Zhou
    Pengcheng Wu
    Neural Computing and Applications, 2024, 36 : 4115 - 4132
  • [6] Knowledge-aware reasoning with self-supervised reinforcement learning for explainable recommendation in MOOCs
    Lin, Yuanguo
    Zhang, Wei
    Lin, Fan
    Zeng, Wenhua
    Zhou, Xiuze
    Wu, Pengcheng
    NEURAL COMPUTING & APPLICATIONS, 2024, 36 (08): : 4115 - 4132
  • [7] Intrinsically Motivated Self-supervised Learning in Reinforcement Learning
    Zhao, Yue
    Du, Chenzhuang
    Zhao, Hang
    Li, Tiejun
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2022), 2022, : 3605 - 3615
  • [8] Self-Supervised Reinforcement Learning for Recommender Systems
    Xin, Xin
    Karatzoglou, Alexandros
    Arapakis, Ioannis
    Jose, Joemon M.
    PROCEEDINGS OF THE 43RD INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '20), 2020, : 931 - 940
  • [9] Visual object classification by robots, using on-line, self-supervised learning
    Iravani, Pejman
    Hall, Peter
    Beale, Daniel
    Charron, Cyril
    Hicks, Yulia
    2011 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS (ICCV WORKSHOPS), 2011,
  • [10] Self-Supervised Dense Visual Representation Learning
    Ozcelik, Timoteos Onur
    Gokberk, Berk
    Akarun, Lale
    32ND IEEE SIGNAL PROCESSING AND COMMUNICATIONS APPLICATIONS CONFERENCE, SIU 2024, 2024,