Multi-View Contrastive Fusion POI Recommendation Based on Hypergraph Neural Network

被引:0
|
作者
Hu, Luyao [1 ]
Han, Guangpu [1 ]
Liu, Shichang [1 ]
Ren, Yuqing [1 ]
Wang, Xu [1 ]
Liu, Ya [1 ]
Wen, Junhao [2 ]
Yang, Zhengyi [2 ]
机构
[1] PetroChina Southwest Oil & Gasfield Co, Chongqing Div, Chongqing 400707, Peoples R China
[2] Chongqing Univ, Sch Bigdata & Software Engn, Chongqing 400044, Peoples R China
关键词
next POI recommendation; multi-view learning; hypergraph learning; contrastive learning;
D O I
10.3390/math13060998
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In the era of information overload, location-based social software has gained widespread popularity, and the demand for personalized POI (Point of Interest) recommendation services is growing rapidly. Recommending the next POI is crucial in recommendation systems, aiming to suggest appropriate next-visit locations based on users' historical trajectories and check-in data. However, the existing research often neglects user preferences' diversity and dynamic nature and the need for the deep modeling of key collaborative relationships across various dimensions. As a result, the recommendation performance is limited. To address these challenges, this paper introduces an innovative Multi-View Contrastive Fusion Hypergraph Learning Model (MVHGAT). The model first constructs three distinct hypergraphs, representing interaction, trajectory, and geographical location, capturing the complex relationships and high-order dependencies between users and POIs from different perspectives. Subsequently, a targeted hypergraph convolutional network is designed for aggregation and propagation, learning the latent factors within each view. Through multi-view weighted contrastive learning, the model uncovers key collaborative effects between views, enhancing both user and POI representations' consistency and discriminative power. The experimental results demonstrate that MVHGAT significantly outperforms several state-of-the-art methods across three public datasets, effectively addressing issues such as data sparsity and oversmoothing. This model provides new insights and solutions for the next POI recommendation task.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] A multi-view mask contrastive learning graph convolutional neural network for age estimation
    Zhang, Yiping
    Shou, Yuntao
    Meng, Tao
    Ai, Wei
    Li, Keqin
    KNOWLEDGE AND INFORMATION SYSTEMS, 2024, 66 (11) : 7137 - 7162
  • [22] Multi-view heterogeneous graph learning with compressed hypergraph neural networks
    Huang, Aiping
    Fang, Zihan
    Wu, Zhihao
    Tan, Yanchao
    Han, Peng
    Wang, Shiping
    Zhang, Le
    NEURAL NETWORKS, 2024, 179
  • [23] Multi-view contrastive learning with virtual social group influence for social recommendation
    Zhang, Chunkai
    Li, Guoqing
    Zhang, Hanyu
    KNOWLEDGE-BASED SYSTEMS, 2024, 294
  • [24] Multi-view Neighbor-Enriched Contrastive Learning Framework for Bundle Recommendation
    Chen, Yuhang
    Liang, Sheng
    Pei, Songwen
    ALGORITHMS AND ARCHITECTURES FOR PARALLEL PROCESSING, ICA3PP 2023, PT III, 2024, 14489 : 411 - 422
  • [25] Multi-view Network Embedding with Structure and Semantic Contrastive Learning
    Shang, Yifan
    Ye, Xiucai
    Sakurai, Tetsuya
    2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, : 870 - 875
  • [26] Graph Contrastive Partial Multi-View Clustering
    Wang, Yiming
    Chang, Dongxia
    Fu, Zhiqiang
    Wen, Jie
    Zhao, Yao
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 (6551-6562) : 6551 - 6562
  • [27] AdaMCL: Adaptive Fusion Multi-View Contrastive Learning for Collaborative Filtering
    Zhu, Guanghui
    Lu, Wang
    Yuan, Chunfeng
    Huang, Yihua
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 1076 - 1085
  • [28] A Clustering-Guided Contrastive Fusion for Multi-View Representation Learning
    Ke, Guanzhou
    Chao, Guoqing
    Wang, Xiaoli
    Xu, Chenyang
    Zhu, Yongqi
    Yu, Yang
    IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2024, 34 (04) : 2056 - 2069
  • [29] Multi-Behavior Hypergraph Contrastive Learning for Session-Based Recommendation
    Guo, Liangmin
    Zhou, Shiming
    Tang, Haiyue
    Zheng, Xiaoyao
    Luo, Yonglong
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2025, 37 (03) : 1325 - 1338
  • [30] Multi-view Outlier Detection for Attributed Network Based on Knowledge Fusion
    Du H.-Y.
    Cao Z.-W.
    Wang W.-J.
    Bai L.
    Zidonghua Xuebao/Acta Automatica Sinica, 2023, 49 (08): : 1732 - 1744