Weak solvability for a class of double phase variable exponents inclusion problems

被引:0
|
作者
Cen, Jinxia [1 ]
Costea, Nicusor [2 ]
机构
[1] Zhejiang Normal Univ, Sch Math Sci, Jinhua 321004, Peoples R China
[2] POLITEHN Natl Univ Sci & Technol Bucharest, Dept Math & Comp Sci, 313 Splaiul Independentei, Bucharest 060042, Romania
来源
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION | 2025年 / 144卷
关键词
Variable exponents double phase operator; Anisotropic Hencky-type materials; Mixed boundary conditions; Hemivariational inequalities; Calculus of Variations; SOBOLEV SPACES; EXISTENCE; REGULARITY; FUNCTIONALS; MINIMIZERS; GROWTH;
D O I
10.1016/j.cnsns.2025.108664
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider a large class of variable exponents double phase differential inclusions with mixed boundary conditions in a bounded domain with Lipschitz boundary. The motivation behind studying this problem is that it may be used in modelling the antiplane shear problem of a long cylinder, made of an anisotropic nonlinear Hencky-type material, in contact with a rigid obstacle. We derive a variational formulation in terms of Lagrange multipliers which formulates to a coupled system consisting of a double hemivariational inequality and a variational inequality. We introduce the corresponding Lagrange functional and show that any critical point, in the sense of Nonsmooth Analysis, of the Lagrangian corresponds to a weak solution of the problem under consideration. Existence and multiplicity results are then established via nonsmooth critical point theory.
引用
收藏
页数:21
相关论文
共 50 条
  • [31] Maximal and Riesz Potential Operators in Double Phase Lorentz Spaces of Variable Exponents
    Mizuta, Y.
    Ohno, T.
    Shimomura, T.
    MATHEMATICAL NOTES, 2022, 111 (5-6) : 729 - 735
  • [32] Continuous Spectrum of Robin Nonhomogeneous Elliptic Problems with Variable Exponents
    Allaoui, Mostafa
    El Amrouss, Abdelrachid
    Ourraoui, Anass
    THAI JOURNAL OF MATHEMATICS, 2021, 19 (02): : 351 - 363
  • [33] Continuity of Riesz potentials for double phase functionals with variable exponents
    Ohno, Takao
    Shimomura, Tetsu
    PUBLICATIONES MATHEMATICAE DEBRECEN, 2023, 103 (1-2): : 171 - 186
  • [34] Regularity results for quasiminima of a class of double phase problems
    Nastasi, Antonella
    Camacho, Cintia Pacchiano
    MATHEMATISCHE ANNALEN, 2025, 391 (01) : 1291 - 1345
  • [35] Fractional double phase Robin problem involving variable order-exponents without Ambrosetti-Rabinowitz condition
    Biswas, Reshmi
    Bahrouni, Sabri
    Carvalho, Marcos L.
    ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2022, 73 (03):
  • [36] Campanato-Morrey spaces for the double phase functionals with variable exponents
    Mizuta, Yoshihiro
    Nakai, Eiichi
    Ohno, Takao
    Shimomura, Tetsu
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2020, 197
  • [37] Global Well-Posedness of Solutions to a Class of Double Phase Parabolic Equation With Variable Exponents
    Yuan, Wen-Shuo
    Ge, Bin
    Cao, Qing-Hai
    POTENTIAL ANALYSIS, 2024, 60 (03) : 1007 - 1030
  • [38] Besov Regularity Estimates for a Class of Obstacle Problems with Variable Exponents
    Ma, Rumeng
    Yao, Fengping
    ACTA APPLICANDAE MATHEMATICAE, 2025, 196 (01)
  • [39] Multiple solutions for a class of quasilinear problems involving variable exponents
    Alves, Claudianor O.
    Barreiro, Jose L. P.
    ASYMPTOTIC ANALYSIS, 2016, 96 (02) : 161 - 184
  • [40] Weighted Lorentz estimates for non-uniformly elliptic problems with variable exponents
    Tran, Minh-Phuong
    Nguyen, Thanh-Nhan
    Pham, Le-Tuyet-Nhi
    Dang, Thi-Thanh-Truc
    MANUSCRIPTA MATHEMATICA, 2023, 172 (3-4) : 1227 - 1244