On the optimal mixing problem of approximate Nash equilibria in bimatrix games

被引:0
|
作者
Deng, Xiaotie [1 ]
Li, Dongchen [2 ]
Li, Hanyu [1 ]
机构
[1] Peking Univ, Sch Comp Sci, CFCS, 5 Yiheyuan Rd, Beijing 100871, Peoples R China
[2] Univ Hong Kong, Sch Comp Sci, Pokfulam Rd, Hong Kong 999077, Peoples R China
关键词
Approximate Nash equilibria; Bimatrix games; Optimal mixing; Approximation algorithms; Computational complexity; COMPLEXITY; ALGORITHMS; NUMBERS;
D O I
10.1016/j.tcs.2025.115072
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper introduces the optimal mixing problem, a natural extension of the computation of approximate Nash Equilibria (NE) in bimatrix games. The problem focuses on determining the optimal convex combination of given strategies that minimizes the approximation (i.e., regret) in NE computation. We develop algorithms for the exact and approximate optimal mixing problems and present new complexity results that bridge both practical and theoretical aspects of NE computation. Practically, our algorithms can be used to enhance and integrate arbitrary existing constant-approximate NE algorithms, offering a powerful tool for the design of approximate NE algorithms. Theoretically, these algorithms allow us to explore the implications of support restrictions on approximate NE and derive the upper-bound separations between approximate NE and exact NE. Consequently, this work contributes to theoretical understandings of the computational complexity of approximate NE under various constraints and practical improvements in multi- agent reinforcement learning (MARL) and other fields where NE computation is involved.
引用
收藏
页数:25
相关论文
共 50 条
  • [1] New algorithms for approximate Nash equilibria in bimatrix games
    Bosse, Hartwig
    Byrka, Jaroslaw
    Markakis, Evangelos
    THEORETICAL COMPUTER SCIENCE, 2010, 411 (01) : 164 - 173
  • [2] A Polynomial-Time Algorithm for 1/3-Approximate Nash Equilibria in Bimatrix Games
    Deligkas, Argyrios
    Fasoulakis, Michail
    Markakis, Evangelos
    ACM TRANSACTIONS ON ALGORITHMS, 2023, 19 (04)
  • [3] Well Supported Approximate Equilibria in Bimatrix Games
    Kontogiannis, Spyros C.
    Spirakis, Paul G.
    ALGORITHMICA, 2010, 57 (04) : 653 - 667
  • [4] Identifying Socially Optimal Equilibria Using Combinatorial Properties of Nash Equilibria in Bimatrix Games
    Dehghanian, Amin
    Xie, Yujia
    Serban, Nicoleta
    INFORMS JOURNAL ON COMPUTING, 2024, 36 (05) : 1261 - 1286
  • [5] Semidefinite Programming and Nash Equilibria in Bimatrix Games
    Ahmadi, Amir Ali
    Zhang, Jeffrey
    INFORMS JOURNAL ON COMPUTING, 2021, 33 (02) : 607 - 628
  • [6] Evolving Mixed Nash Equilibria for Bimatrix Games
    Iclanzan, David
    Noemi, Gasko
    Dumitrescu, D.
    PROCEEDINGS OF THE FOURTEENTH INTERNATIONAL CONFERENCE ON GENETIC AND EVOLUTIONARY COMPUTATION COMPANION (GECCO'12), 2012, : 655 - 656
  • [7] Well Supported Approximate Equilibria in Bimatrix Games
    Spyros C. Kontogiannis
    Paul G. Spirakis
    Algorithmica, 2010, 57 : 653 - 667
  • [8] Approximate Nash equilibria in anonymous games
    Daskalakis, Constantinos
    Papadimitriou, Christos H.
    JOURNAL OF ECONOMIC THEORY, 2015, 156 : 207 - 245
  • [9] On the computational complexity of Nash equilibria for (0,1) bimatrix games
    Codenotti, B
    Stefankovic, D
    INFORMATION PROCESSING LETTERS, 2005, 94 (03) : 145 - 150
  • [10] Computing Approximate Nash Equilibria in Polymatrix Games
    Deligkas, Argyrios
    Fearnley, John
    Savani, Rahul
    Spirakis, Paul
    ALGORITHMICA, 2017, 77 (02) : 487 - 514