AN OPERATIONAL APPROACH TO LARGE-SCALE CROP YIELD PREDICTION WITH SPATIO-TEMPORAL MACHINE LEARNING MODELS

被引:0
|
作者
Helber, Patrick [1 ]
Bischke, Benjamin [1 ]
Packbier, Carolin [1 ]
Habelitz, Peter [1 ]
Seefeldt, Florian [1 ]
机构
[1] Vis Impulse GmbH, Trippstadter Str 122, D-67663 Kaiserslautern, Germany
关键词
Yield Estimation; Yield Forecasting;
D O I
10.1109/IGARSS53475.2024.10641218
中图分类号
P9 [自然地理学];
学科分类号
0705 ; 070501 ;
摘要
Precise and reliable crop yield prediction serves as a valuable tool empowering farmers to make informed and sustainable decisions. However, yield prediction is intricately challenging due to the various factors that play a role in the complex landscape of crop growth. In this paper, we propose an operational yield forecasting approach based on spatiotemporal Machine Learning and a many-to-many network structure. We demonstrate that the simultaneous consideration of spatial and temporal dependencies of crop yield substantially improves the yield prediction performance on field and subfield level across all regions of our large-scale dataset. We further show how our many-to-many network structure leads to outstanding operational results.
引用
收藏
页码:4299 / 4302
页数:4
相关论文
共 50 条
  • [21] Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods
    Nyeki, A.
    Kerepesi, C.
    Daroczy, B.
    Benczur, A.
    Milics, G.
    Nagy, J.
    Harsanyi, E.
    Kovacs, A. J.
    Nemenyi, M.
    PRECISION AGRICULTURE, 2021, 22 (05) : 1397 - 1415
  • [22] Application of spatio-temporal data in site-specific maize yield prediction with machine learning methods
    A. Nyéki
    C. Kerepesi
    B. Daróczy
    A. Benczúr
    G. Milics
    J. Nagy
    E. Harsányi
    A. J. Kovács
    M. Neményi
    Precision Agriculture, 2021, 22 : 1397 - 1415
  • [23] MACHINE LEARNING AND DEEP LEARNING FOR ENHANCED SPATIO-TEMPORAL WAVE PARAMETERS PREDICTION
    Tan, Tian
    Venugopal, Vengatesan
    PROCEEDINGS OF ASME 2024 43RD INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING, OMAE2024, VOL 6, 2024,
  • [24] A Machine-Learning Approach for Communication Prediction of Large-Scale Applications
    Papadopoulou, Nikela
    Goumas, Georgios
    Koziris, Nectarios
    2015 IEEE INTERNATIONAL CONFERENCE ON CLUSTER COMPUTING - CLUSTER 2015, 2015, : 120 - 123
  • [25] Quantifying the Spatio-Temporal Process of Township Urbanization: A Large-Scale Data-Driven Approach
    Liu, Xinliang
    Wang, Yi
    Li, Yong
    Wu, Jinshui
    ISPRS INTERNATIONAL JOURNAL OF GEO-INFORMATION, 2019, 8 (09)
  • [26] Impact of crop management and environment on the spatio-temporal variance of potato yield at regional scale
    Ojeda, Jonathan J.
    Rezaei, Ehsan Eyshi
    Kamali, Bahareh
    McPhee, John
    Meinke, Holger
    Siebert, Stefan
    Webb, Mathew A.
    Ara, Iffat
    Mulcahy, Frank
    Ewert, Frank
    FIELD CROPS RESEARCH, 2021, 270
  • [27] Obtaining scalable and accurate classification in large-scale spatio-temporal domains
    Vainer, Igor
    Kraus, Sarit
    Kaminka, Gal A.
    Slovin, Hamutal
    KNOWLEDGE AND INFORMATION SYSTEMS, 2011, 29 (03) : 527 - 564
  • [28] Spatio-temporal performance of large-scale Gezira Irrigation Scheme, Sudan
    Al Zayed, Islam Sabry
    Elagib, Nadir Ahmed
    Ribbe, Lars
    Heinrich, Juergen
    AGRICULTURAL SYSTEMS, 2015, 133 : 131 - 142
  • [29] Large-Scale Distributed Linkage of Records Containing Spatio-Temporal Information
    Karapiperis, Dimitrios
    Gkoulalas-Divanis, Aris
    Verykios, Vassilios S.
    2020 IEEE INTERNATIONAL SMART CITIES CONFERENCE (ISC2), 2020,
  • [30] PRACTICAL LARGE-SCALE SPATIO-TEMPORAL MODELING OF PARTICULATE MATTER CONCENTRATIONS
    Paciorek, Christopher J.
    Yanosky, Jeff D.
    Puett, Robin C.
    Laden, Francine
    Suh, Helen H.
    ANNALS OF APPLIED STATISTICS, 2009, 3 (01): : 370 - 397