Lead-Free Piezoelectric (K0.5, Na0.5) NbO3-Natural Rubber Energy Harvester for Sensors

被引:0
作者
Ashokan, Vinatha [1 ]
James, Nijesh K. [1 ]
机构
[1] Univ Calicut, St Josephs Coll Autonomous Devagiri, Ctr Postgrad Studies & Res, Dept Phys, Calicut 08, Kerala, India
来源
PHYSICA STATUS SOLIDI A-APPLICATIONS AND MATERIALS SCIENCE | 2024年
关键词
energy harvesters; mechanical properties; natural rubber composites; piezoelectric characterizations; potassium sodium niobates; COMPOSITES; PERFORMANCE;
D O I
10.1002/pssa.202400685
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This study aims to develop flexible, biocompatible mechanical energy harvesters for self-powered sensor applications, utilizing lead-free potassium sodium niobate (K0.5, Na0.5) NbO3 (KNN) ceramic fillers embedded in natural rubber (NR) matrix. KNN ceramic fillers are synthesized using the conventional mixed oxide method and incorporated into the NR matrix to evaluate the effect of varying filler concentrations on the piezoelectric, dielectric, and mechanical properties of the composite. The findings suggest that as the KNN filler content increases, the electrical properties, including piezoelectric and dielectric performance, improve, whereas the mechanical properties, such as tensile strength and flexibility, decrease. This work offers a sustainable, lead-free alternative for energy harvesting systems, with potential applications in flexible electronics, wearable devices, and biomedical sensors.
引用
收藏
页数:6
相关论文
共 50 条
[21]   Structure and electrical properties of (0.99-x)K0.5Na0.5Nb0.96Sb0.04O3-0.01BaZrO3-xBi0.5Na0.5ZrO3 lead-free piezoelectric ceramics [J].
Ma, Jian ;
Wu, Bo ;
Wu, Wenjuan ;
Chen, Min .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2018, 29 (14) :12323-12329
[22]   Antiferroelectric-like double hysteresis loops in Ag-doped K0.5 Na0.5NbO3 ceramics [J].
Gaur, Roopam ;
Singh, Satyendra .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 290
[23]   Microstructures and energy storage properties of Mn-doped 0.97Bi0.47Na0.47Ba0.06TiO3-0.03K0.5Na0.5NbO3 lead-free antiferroelectric ceramics [J].
Yuan, Changlai ;
Meng, Liufang ;
Liu, Yong ;
Zhou, Changrong ;
Chen, Guohua ;
Feng, Qin ;
Cheng, Gang ;
Rao, Guanghui .
JOURNAL OF MATERIALS SCIENCE-MATERIALS IN ELECTRONICS, 2015, 26 (11) :8793-8797
[24]   Enhanced electrocaloric response and high energy-storage properties in lead-free (1-x) (K0.5Na0.5)NbO3 - xSrZrO3 nanocrystalline ceramics [J].
Kumar, Raju ;
Singh, Satyendra .
JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 764 :289-294
[25]   (K0.5Na0.5)NbO3-Bi(Cu2/3Nb1/3)O3 Lead-free Ceramics: Phase Transition, Enhanced Dielectric and Piezoelectric Properties [J].
Chen, Xiuli ;
Yan, Xiao ;
Liu, Gaofeng ;
Li, Xiaoxia ;
Huang, Guisheng ;
Zhou, Huanfu .
JOURNAL OF ELECTRONIC MATERIALS, 2018, 47 (01) :794-799
[26]   Comparative study on microstructure and electrical properties of (K0.5Na0.5)NbO3 lead-free ceramics prepared via two different sintering methods [J].
Su, Yu-long ;
Chen, Xiao-ming ;
Yu, Zi-de ;
Lian, Han-li ;
Zheng, Di-di ;
Peng, Jian-hong .
JOURNAL OF MATERIALS SCIENCE, 2017, 52 (05) :2934-2943
[27]   Improved Li and Sb doped lead-free (Na,K)NbO3 piezoelectric ceramics for energy harvesting applications [J].
Kim, Jinhwan ;
Ji, Jae-Hoon ;
Shin, Dong-Jin ;
Koh, Jung-Hyuk .
CERAMICS INTERNATIONAL, 2018, 44 (18) :22219-22224
[28]   Phase transition and electrical characteristics of Bi0.5(Na0.78K0.22)0.5 TiO3-BiFeO3 lead-free piezoelectric ceramics [J].
Lee, Ku-Tak ;
Park, Jung-Soo ;
Cho, Jeong-Ho ;
Jeong, Young-Hun ;
Paik, Jong-Hoo ;
Yun, Ji Sun .
CERAMICS INTERNATIONAL, 2015, 41 (08) :10298-10303
[29]   Antibacterial and cellular response of piezoelectric Na0.5K0.5NbO3modified 1393 bioactive glass [J].
Verma, Alok Singh ;
Kumar, Devendra ;
Dubey, Ashutosh Kumar .
MATERIALS SCIENCE AND ENGINEERING C-MATERIALS FOR BIOLOGICAL APPLICATIONS, 2020, 116
[30]   K0.5Na0.5NbO3 piezoelectric ceramics and its composites fabricated from hydrothermal powders [J].
Jiang, Chunyu ;
Tian, Xiaoxiao ;
Shi, Guodong .
PROCEEDINGS OF THE 2016 4TH INTERNATIONAL CONFERENCE ON SENSORS, MECHATRONICS AND AUTOMATION (ICSMA 2016), 2016, 136 :321-327