A note on the range of stochastic processes

被引:0
作者
Boudabra, Maher [1 ]
Wu, Binghao [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran, Saudi Arabia
[2] Monash Univ, Sch Math, Melbourne, Vic, Australia
关键词
stochastic processes; Brownian motion with drift; BROWNIAN-MOTION;
D O I
10.1214/24-ECP653
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Brownian motion with drift is simply a process V t eta of the form V (eta) (t) = B (t) + eta t where B (t) is a standard Brownian motion and eta > 0. In [7], the authors showed that the underlying range R- t ( V- eta ) = sup(0) <=( s) <= (t) V- t(eta) is equivalent to eta t a.e in the long run, i.e Rt ( V-t (eta)) / t a.e -> t ->infinity eta. (0.1) In this paper, we show that (0.1) follows from a deterministic property. More precisely, we show that the long run behavior of the range of a (deterministic) function is obtainable straightaway from that of the function itself.
引用
收藏
页数:4
相关论文
共 50 条
[31]   Sharp maximal inequalities for stochastic processes [J].
Ya. A. Lyulko ;
A. N. Shiryaev .
Proceedings of the Steklov Institute of Mathematics, 2014, 287 :155-173
[32]   Stochastic processes and target zones revisited [J].
Beladi, Hamid ;
Chakrabarti, Avik .
ECONOMICS LETTERS, 2012, 116 (01) :34-36
[33]   Stochastic Processes Approach in GPR Applications [J].
Haridim, Motti ;
Zemach, Reuven .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[34]   REPRESENTATIONS OF GENERAL STOCHASTIC-PROCESSES [J].
JOHNSON, DP .
JOURNAL OF MULTIVARIATE ANALYSIS, 1979, 9 (01) :16-58
[35]   Evolutionarily stable strategies for stochastic processes [J].
Dostálková, I ;
Kindlmann, P .
THEORETICAL POPULATION BIOLOGY, 2004, 65 (03) :205-210
[36]   Open strings, holography and stochastic processes [J].
Cadoni, M ;
Carta, P .
JOURNAL OF HIGH ENERGY PHYSICS, 2001, (01)
[37]   Study of dependence for some stochastic processes [J].
Bielecki, Tomasz R. ;
Jakubowski, Jacek ;
Vidozzi, Andrea ;
Vidozzi, Luca .
STOCHASTIC ANALYSIS AND APPLICATIONS, 2008, 26 (04) :903-924
[38]   Sharp maximal inequalities for stochastic processes [J].
Lyulko, Ya. A. ;
Shiryaev, A. N. .
PROCEEDINGS OF THE STEKLOV INSTITUTE OF MATHEMATICS, 2014, 287 (01) :155-173
[39]   A theory of polyspectra for nonstationary stochastic processes [J].
Hanssen, A ;
Scharf, LL .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2003, 51 (05) :1243-1252
[40]   A domain-theoretic approach to Brownian motion and general continuous stochastic processes [J].
Bilokon, Paul ;
Edalat, Abbas .
THEORETICAL COMPUTER SCIENCE, 2017, 691 :10-26