A note on the range of stochastic processes

被引:0
作者
Boudabra, Maher [1 ]
Wu, Binghao [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran, Saudi Arabia
[2] Monash Univ, Sch Math, Melbourne, Vic, Australia
关键词
stochastic processes; Brownian motion with drift; BROWNIAN-MOTION;
D O I
10.1214/24-ECP653
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Brownian motion with drift is simply a process V t eta of the form V (eta) (t) = B (t) + eta t where B (t) is a standard Brownian motion and eta > 0. In [7], the authors showed that the underlying range R- t ( V- eta ) = sup(0) <=( s) <= (t) V- t(eta) is equivalent to eta t a.e in the long run, i.e Rt ( V-t (eta)) / t a.e -> t ->infinity eta. (0.1) In this paper, we show that (0.1) follows from a deterministic property. More precisely, we show that the long run behavior of the range of a (deterministic) function is obtainable straightaway from that of the function itself.
引用
收藏
页数:4
相关论文
共 50 条
  • [21] Weak convergence of convex stochastic processes
    Arcones, MA
    STATISTICS & PROBABILITY LETTERS, 1998, 37 (02) : 171 - 182
  • [22] The new maximal measures for stochastic processes
    Koenig, Heinz
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2007, 26 (01): : 111 - 132
  • [23] Symmetry Classes of Classical Stochastic Processes
    Sa, Lucas
    Ribeiro, Pedro
    Prosen, Tomaz
    Bernard, Denis
    JOURNAL OF STATISTICAL PHYSICS, 2025, 192 (03)
  • [24] Stochastic continuity equation and related processes
    Bassi, G
    Bazzani, A
    Mais, H
    Turchetti, G
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2005, 347 : 17 - 37
  • [25] DIFFERENTIALS OF SOME USUAL STOCHASTIC PROCESSES
    Mihai, Doina-Constanta
    JOURNAL OF SCIENCE AND ARTS, 2014, (01) : 53 - 56
  • [26] Stochastic Processes and Temporal Data Mining
    Cotofrei, Paul
    Stoffel, Kilian
    KDD-2007 PROCEEDINGS OF THE THIRTEENTH ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2007, : 183 - 190
  • [27] Probability of stochastic processes and spacetime geometry
    Canessa, Enrique
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2007, 375 (01) : 123 - 128
  • [28] Stochastic processes in terms of inner premeasures
    Koenig, Heinz
    NOTE DI MATEMATICA, 2006, 25 (02): : 1 - 30
  • [29] ON A CLASS OF NONSTATIONARY STOCHASTIC-PROCESSES
    MIAMEE, AG
    HARDIN, JC
    SANKHYA-THE INDIAN JOURNAL OF STATISTICS SERIES A, 1990, 52 : 145 - 156
  • [30] Sharp maximal inequalities for stochastic processes
    Ya. A. Lyulko
    A. N. Shiryaev
    Proceedings of the Steklov Institute of Mathematics, 2014, 287 : 155 - 173