A note on the range of stochastic processes

被引:0
|
作者
Boudabra, Maher [1 ]
Wu, Binghao [2 ]
机构
[1] King Fahd Univ Petr & Minerals, Dept Math, Dhahran, Saudi Arabia
[2] Monash Univ, Sch Math, Melbourne, Vic, Australia
关键词
stochastic processes; Brownian motion with drift; BROWNIAN-MOTION;
D O I
10.1214/24-ECP653
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
A Brownian motion with drift is simply a process V t eta of the form V (eta) (t) = B (t) + eta t where B (t) is a standard Brownian motion and eta > 0. In [7], the authors showed that the underlying range R- t ( V- eta ) = sup(0) <=( s) <= (t) V- t(eta) is equivalent to eta t a.e in the long run, i.e Rt ( V-t (eta)) / t a.e -> t ->infinity eta. (0.1) In this paper, we show that (0.1) follows from a deterministic property. More precisely, we show that the long run behavior of the range of a (deterministic) function is obtainable straightaway from that of the function itself.
引用
收藏
页数:4
相关论文
共 50 条
  • [1] Model selection for a class of stochastic processes or random fields with bounded range
    Field, R. V., Jr.
    Grigoriu, M.
    PROBABILISTIC ENGINEERING MECHANICS, 2009, 24 (03) : 331 - 342
  • [2] Stochastic processes associated with photophoresis
    Schinner, Andreas
    Rohatschek, Hans
    JOURNAL OF AEROSOL SCIENCE, 2008, 39 (06) : 549 - 553
  • [3] Artificial neural networks as approximators of stochastic processes
    Belli, MR
    Conti, M
    Crippa, P
    Turchetti, C
    NEURAL NETWORKS, 1999, 12 (4-5) : 647 - 658
  • [4] Extremes of Stochastic Processes
    Husova, Jana
    PROCEEDINGS OF THE 23RD INTERNATIONAL CONFERENCE ON MATHEMATICAL METHODS IN ECONOMICS 2005, 2005, : 158 - 163
  • [5] Relativistic Stochastic processes
    Debbasch, F.
    Chevalier, C.
    NONEQUILIBRIUM STATISTICAL MECHANICS AND NONLINEAR PHYSICS, 2007, 913 : 42 - +
  • [6] RESOLVENT STOCHASTIC PROCESSES
    Ibragimov, I. A.
    Smorodina, N., V
    Faddeev, M. M.
    ST PETERSBURG MATHEMATICAL JOURNAL, 2024, 35 (01) : 145 - 152
  • [7] Time parameters and Lorentz transformations of relativistic stochastic processes
    Dunkel, Joern
    Haenggi, Peter
    Weber, Stefan
    PHYSICAL REVIEW E, 2009, 79 (01):
  • [8] Modeling of long-range memory processes with inverse cubic distributions by the nonlinear stochastic differential equations
    Kaulakys, B.
    Alaburda, M.
    Ruseckas, J.
    JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2016,
  • [9] A Denseness Property of Stochastic Processes
    Passeggeri, Riccardo
    JOURNAL OF THEORETICAL PROBABILITY, 2025, 38 (01)
  • [10] NUMERICAL ALGORITHMS FOR STOCHASTIC PROCESSES
    Janak, Josef
    13TH INTERNATIONAL DAYS OF STATISTICS AND ECONOMICS, 2019, : 553 - 567