MORE: a multi-omics data-driven hypergraph integration network for biomedical data classification and biomarker identification

被引:1
|
作者
Wang, Yuhan [1 ]
Wang, Zhikang [2 ,3 ]
Yu, Xuan [4 ]
Wang, Xiaoyu [2 ,3 ]
Song, Jiangning [2 ,3 ,5 ]
Yu, Dong-Jun [1 ]
Ge, Fang [6 ,7 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Comp Sci & Engn, 200 Xiaolingwei, Nanjing 210094, Peoples R China
[2] Monash Univ, Biomed Discovery Inst, Wellington Rd, Melbourne, Vic 3800, Australia
[3] Monash Univ, Dept Biochem & Mol Biol, Wellington Rd, Melbourne, Vic 3800, Australia
[4] City Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
[5] Monash Univ, Data Futures Inst, Wellington Rd, Clayton, Vic 3800, Australia
[6] Nanjing Univ Posts & Telecommun, State Key Lab Organ Elect & Informat Displays, 9 Wenyuan, Nanjing 210023, Peoples R China
[7] Nanjing Univ Posts &Telecommun, Inst Adv Mat IAM, 9 Wenyuan, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
comprehensive hyperedge group; multi-omics hypergraph encoding module; multi-omics self-attention mechanism; identify disease-related biomarkers; BREAST-CANCER; CELLS;
D O I
10.1093/bib/bbae658
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
High-throughput sequencing methods have brought about a huge change in omics-based biomedical study. Integrating various omics data is possibly useful for identifying some correlations across data modalities, thus improving our understanding of the underlying biological mechanisms and complexity. Nevertheless, most existing graph-based feature extraction methods overlook the complementary information and correlations across modalities. Moreover, these methods tend to treat the features of each omics modality equally, which contradicts current biological principles. To solve these challenges, we introduce a novel approach for integrating multi-omics data termed Multi-Omics hypeRgraph integration nEtwork (MORE). MORE initially constructs a comprehensive hyperedge group by extensively investigating the informative correlations within and across modalities. Subsequently, the multi-omics hypergraph encoding module is employed to learn the enriched omics-specific information. Afterward, the multi-omics self-attention mechanism is then utilized to adaptatively aggregate valuable correlations across modalities for representation learning and making the final prediction. We assess MORE's performance on datasets characterized by message RNA (mRNA) expression, Deoxyribonucleic Acid (DNA) methylation, and microRNA (miRNA) expression for Alzheimer's disease, invasive breast carcinoma, and glioblastoma. The results from three classification tasks highlight the competitive advantage of MORE in contrast with current state-of-the-art (SOTA) methods. Moreover, the results also show that MORE has the capability to identify a greater variety of disease-related biomarkers compared to existing methods, highlighting its advantages in biomedical data mining and interpretation. Overall, MORE can be investigated as a valuable tool for facilitating multi-omics analysis and novel biomarker discovery. Our code and data can be publicly accessed at https://github.com/Wangyuhanxx/MORE.
引用
收藏
页数:11
相关论文
共 39 条
  • [1] Multi-omics integration method based on attention deep learning network for biomedical data classification
    Gong, Ping
    Cheng, Lei
    Zhang, Zhiyuan
    Meng, Ao
    Li, Enshuo
    Chen, Jie
    Zhang, Longzhen
    COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE, 2023, 231
  • [2] Integration of multi-omics data using adaptive graph learning and attention mechanism for patient classification and biomarker identification
    Ouyang, Dong
    Liang, Yong
    Li, Le
    Ai, Ning
    Lu, Shanghui
    Yu, Mingkun
    Liu, Xiaoying
    Xie, Shengli
    COMPUTERS IN BIOLOGY AND MEDICINE, 2023, 164
  • [3] MOGONET integrates multi-omics data using graph convolutional networks allowing patient classification and biomarker identification
    Wang, Tongxin
    Shao, Wei
    Huang, Zhi
    Tang, Haixu
    Zhang, Jie
    Ding, Zhengming
    Huang, Kun
    NATURE COMMUNICATIONS, 2021, 12 (01)
  • [4] Simultaneous Integration of Multi-omics Data Improves the Identification of Cancer Driver Modules
    Silverbush, Dana
    Cristea, Simona
    Yanovich-Arad, Gali
    Geiger, Tamar
    Beerenwinkel, Niko
    Sharan, Roded
    CELL SYSTEMS, 2019, 8 (05) : 456 - +
  • [5] Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review
    Vahabi, Nasim
    Michailidis, George
    FRONTIERS IN GENETICS, 2022, 13
  • [6] Molecular Subtyping of Cancer Based on Robust Graph Neural Network and Multi-Omics Data Integration
    Yin, Chaoyi
    Cao, Yangkun
    Sun, Peishuo
    Zhang, Hengyuan
    Li, Zhi
    Xu, Ying
    Sun, Huiyan
    FRONTIERS IN GENETICS, 2022, 13
  • [7] Integrative network fusion-based multi-omics study for biomarker identification and patient classification of rheumatoid arthritis
    Ding, Zihe
    Chen, Wenjia
    Wu, Hao
    Li, Weijie
    Mao, Xia
    Su, Weiwei
    Zhang, Yanqiong
    Lin, Na
    CHINESE MEDICINE, 2023, 18 (01)
  • [8] Multiview clustering of multi-omics data integration by using a penalty model
    AL-kuhali, Hamas A.
    Shan, Ma
    Hael, Mohanned Abduljabbar
    Al-Hada, Eman A.
    Al-Murisi, Shamsan A.
    Al-kuhali, Ahmed A.
    Aldaifl, Ammar A. Q.
    Amin, Mohammed Elmustafa
    BMC BIOINFORMATICS, 2022, 23 (01)
  • [9] STATegra: Multi-Omics Data Integration - A Conceptual Scheme With a Bioinformatics Pipeline
    Planell, Nuria
    Lagani, Vincenzo
    Sebastian-Leon, Patricia
    van der Kloet, Frans
    Ewing, Ewoud
    Karathanasis, Nestoras
    Urdangarin, Arantxa
    Arozarena, Imanol
    Jagodic, Maja
    Tsamardinos, Ioannis
    Tarazona, Sonia
    Conesa, Ana
    Tegner, Jesper
    Gomez-Cabrero, David
    FRONTIERS IN GENETICS, 2021, 12
  • [10] Integration of multi-omics data reveals a novel hybrid breast cancer subtype and its biomarkers
    Wang, Zhen-zhen
    Li, Xu-hua
    Wen, Xiao-ling
    Wang, Na
    Guo, Yu
    Zhu, Xu
    Fu, Shu-heng
    Xiong, Fei-fan
    Bai, Jing
    Gao, Xiao-ling
    Wang, Hong-jiu
    FRONTIERS IN ONCOLOGY, 2023, 13