AI in single-atom catalysts: a review of design and applications

被引:0
|
作者
Yu, Qiumei [1 ]
Ma, Ninggui [1 ,2 ]
Leung, Chihon [2 ]
Liu, Han [2 ,3 ]
Ren, Yang [2 ,3 ]
Wei, Zhanhua [1 ]
机构
[1] Huaqiao Univ, Inst Luminescent Mat & Informat Displays, Coll Mat Sci & Engn, Xiamen Key Lab Optoelect Mat & Adv Mfg, 668 Jimei Ave, Xiamen 361000, Fujian, Peoples R China
[2] City Univ Hong Kong, Dept Phys, Hong Kong 999077, Peoples R China
[3] City Univ Hong Kong, Shenzhen Res Inst, Shenzhen 518000, Guangdong, Peoples R China
来源
JOURNAL OF MATERIALS INFORMATICS | 2025年 / 5卷 / 01期
关键词
Single-atom catalysts; AI; machine learning; HIGH-THROUGHPUT; MATERIALS DISCOVERY; REDUCTION REACTION; MACHINE; OPTIMIZATION; GRAPHDIYNE; STABILITY; METALS; ALLOY; ORR;
D O I
10.20517/jmi.2024.78
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Single-atom catalysts (SACs) have emerged as a research frontier in catalytic materials, distinguished by their unique atom-level dispersion, which significantly enhances catalytic activity, selectivity, and stability. SACs demonstrate substantial promise in electrocatalysis applications, such as fuel cells, CO2 reduction, and hydrogen production, due to their ability to maximize utilization of active sites. However, the development of efficient and stable SACs involves intricate design and screening processes. In this work, artificial intelligence (AI), particularly machine learning (ML) and neural networks (NNs), offers powerful tools for accelerating the discovery and optimization of SACs. This review systematically discusses the application of AI technologies in SACs development through four key stages: (1) Density functional theory (DFT) and ab initio molecular dynamics (AIMD) simulations: DFT and AIMD are used to investigate catalytic mechanisms, with high-throughput applications significantly catalytic performance, streamlining the selection of promising materials; (3) NNs: NNs expedite the screening of known structural models, facilitating rapid assessment of catalytic potential; (4) Generative adversarial networks (GANs): GANs enable the prediction and design of novel high-performance catalysts tailored to specific requirements. This work provides a comprehensive overview of the current status of AI applications in SACs and offers insights and recommendations for future advancements in the field.
引用
收藏
页数:32
相关论文
共 50 条
  • [31] Single-Atom Catalysts in Catalytic Biomedicine
    Xiang, Huijing
    Feng, Wei
    Chen, Yu
    ADVANCED MATERIALS, 2020, 32 (08)
  • [32] Recent Advances in Synthesis and Applications of Single-Atom Catalysts for Rechargeable Batteries
    Shah, Syed Shoaib Ahmad
    Najam, Tayyaba
    Javed, Muhammad Sufyan
    Bashir, Muhammad Sohail
    Nazir, Muhammad Altaf
    Khan, Naseem Ahmad
    Rehman, Aziz ur
    Subhan, Md Abdus
    Rahman, Mohammed Muzibur
    CHEMICAL RECORD, 2022, 22 (07)
  • [33] Metal-Support Interactions of Single-Atom Catalysts for Biomedical Applications
    Shi, Qiaolan
    Yu, Tianrong
    Wu, Renfei
    Liu, Jian
    ACS APPLIED MATERIALS & INTERFACES, 2021, 13 (51) : 60815 - 60836
  • [34] Natural biomass derived single-atom catalysts for energy and environmental applications
    Yu, Nan
    Liu, Xin
    Kuai, Long
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2024, 276
  • [35] Dual-Active-Sites Single-Atom Catalysts for Advanced Applications
    Zhang, Shaolong
    Hou, Minchen
    Zhai, Yanliang
    Liu, Hongjie
    Zhai, Dong
    Zhu, Youqi
    Ma, Li
    Wei, Bin
    Huang, Jing
    SMALL, 2023, 19 (42)
  • [36] Computational design of single-atom catalysts embedded on reduced graphitic carbon nitride monolayers
    Jakhar, Mukesh
    Ding, Yi
    Fahlman, Bradley D.
    Barone, Veronica
    NANO EXPRESS, 2024, 5 (01):
  • [37] Single-Atom Alloys as a Reductionist Approach to the Rational Design of Heterogeneous Catalysts
    Giannakakis, Georgios
    Flytzani-Stephanopoulos, Maria
    Sykes, E. Charles H.
    ACCOUNTS OF CHEMICAL RESEARCH, 2019, 52 (01) : 237 - 247
  • [38] The Single Atom Anchoring Strategy: Rational Design of MXene-Based Single-Atom Catalysts for Electrocatalysis
    Wang, Lixiang
    Dou, Yuhai
    Gan, Rong
    Zhao, Qin
    Ma, Quanlei
    Liao, Yijing
    Cheng, Guidan
    Zhang, Yan
    Wang, Dingsheng
    SMALL, 2025, 21 (11)
  • [39] Graphene-supported metal single-atom catalysts: a concise review
    Ren, Shuai
    Yu, Qi
    Yu, Xiaohu
    Rong, Ping
    Jiang, Liyun
    Jiang, Jianchao
    SCIENCE CHINA-MATERIALS, 2020, 63 (06) : 903 - 920
  • [40] A review of carbon-supported single-atom catalysts for electrochemical reactions
    Wang, Yi-cheng
    Ma, Xiao-bo
    Ayeza
    Wang, Chen-xu
    Li, Yang
    Yang, Cheng-long
    Wang, Zhe-fan
    Wang, Chao
    Hu, Chao
    Zhang, Ya-ting
    NEW CARBON MATERIALS, 2024, 39 (03) : 407 - 438