Impact of 3D-printed rods occupancy on photonic crystal transmission properties

被引:0
|
作者
Karakilinc, Ozgur Onder [1 ]
机构
[1] Pamukkale Univ, Dept Elect Elect Engn, Denizli, Turkiye
关键词
photonic crystals; 3D printed; FDTD; 3D; OPTICS; PLA;
D O I
10.1088/1402-4896/adc348
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this study, the effect of different filling ratios on the transmission properties of rods printed by a 3D printer when using them in a photonic crystal cavity structure was investigated. First, the dielectric constant was measured experimentally for two different PLA (Polylactic Acid) and ABS (Acrylonitrile Butadiene Styrene) materials commonly used in 3D printers. Then, dielectric rods were printed with different filling ratios. The printed rod was transferred to the Lumerical FDTD software program and the photonic crystal cavity structure containing this rod was analyzed. The dispersion diagrams of the structure and the transmission spectrum were obtained. Then, these rods printed in the experimental stage were placed in the photonic crystal cavity structure containing the Alumina rod, and measurements were taken in the microwave region. As a result, it was seen that the dispersion properties of the structure were affected by the filling ratio. It was observed that with the decrease in the effective index of the rod, the band gap shifted upwards, and the bandwidth decreased, and when the rod was used in the cavity, the resonant transmission frequency shifted. This study can be a guide in determining the deviation range that occurs in designs to be made using 3D prints in communication applications.
引用
收藏
页数:10
相关论文
共 50 条
  • [41] 3D-Printed Electrodes with Improved Mass Transport Properties
    Loelsberg, Jonas
    Starck, Ottokar
    Stiefel, Serafin
    Hereijgers, Jonas
    Breugelmans, Tom
    Wessling, Matthias
    CHEMELECTROCHEM, 2017, 4 (12): : 3309 - 3313
  • [42] Structure and Mechanical Properties of 3D-Printed Ceramic Specimens
    Promakhov, V. V.
    Zhukov, A. S.
    Vorozhtsov, A. B.
    Schults, N. A.
    Kovalchuk, S. V.
    Kozhevnikov, S. V.
    Olisov, A. V.
    Klimenko, V. A.
    RUSSIAN PHYSICS JOURNAL, 2019, 62 (05) : 876 - 881
  • [43] Microstructure and material properties of 3D-printed bimetallic steels
    Yuan, Yue
    Zeng, Bin
    Ge, Hanbin
    Wang, Chun-Lin
    THIN-WALLED STRUCTURES, 2025, 206
  • [44] Anisotropy in mechanical properties of 3D-printed layered concrete
    Slavcheva, G. S.
    Levchenko, A. V.
    Shvedova, M. A.
    Karakchi-ogly, D. R.
    Babenko, D. S.
    MAGAZINE OF CIVIL ENGINEERING, 2024, 17 (03):
  • [45] Mechanical properties and deformation curves of the 3D-printed polycarbonate
    Andrianov, I. K.
    Feoktistov, S. I.
    MATERIALS PHYSICS AND MECHANICS, 2023, 51 (01): : 108 - 118
  • [46] Mechanical Properties of 3D-Printed Occlusal Splint Materials
    Prpic, Vladimir
    Spehar, Filipa
    Stajdohar, Dominik
    Bjelica, Roko
    Cimic, Samir
    Par, Matej
    DENTISTRY JOURNAL, 2023, 11 (08)
  • [47] GEOMETRY AND MECHANICAL PROPERTIES OF A 3D-PRINTED TITANIUM MICROSTRUCTURE
    Rehounek, Lubos
    Hajkova, Petra
    Vakrcka, Petr
    Jira, Ales
    9TH ANNUAL CONFERENCE NANO & MACRO MECHANICS 2018, 2018, 15 : 104 - 108
  • [48] Dielectric and viscoelastic properties of 3D-printed biobased materials
    Lecoublet, Morgan
    Ragoubi, Mohamed
    Leblanc, Nathalie
    Koubaa, Ahmed
    INDUSTRIAL CROPS AND PRODUCTS, 2024, 212
  • [49] Structure and Mechanical Properties of 3D-Printed Ceramic Specimens
    V. V. Promakhov
    A. S. Zhukov
    A. B. Vorozhtsov
    N. A. Schults
    S. V. Kovalchuk
    S. V. Kozhevnikov
    A. V. Olisov
    V. A. Klimenko
    Russian Physics Journal, 2019, 62 : 876 - 881
  • [50] Geotechnical properties of 3D-printed transparent granular soil
    Yingzhen Li
    Hang Zhou
    Hanlong Liu
    Xuanming Ding
    Wengang Zhang
    Acta Geotechnica, 2021, 16 : 1789 - 1800