Protein-Peptide Docking with ESMFold Language Model

被引:0
|
作者
Zalewski, Mateusz [1 ]
Wallner, Bjorn [2 ]
Kmiecik, Sebastian [1 ]
机构
[1] Univ Warsaw, Fac Chem, Biol & Chem Res Ctr, PL-02093 Warsaw, Poland
[2] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
关键词
PREDICTION;
D O I
10.1021/acs.jctc.4c01585
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing peptide therapeutics requires precise peptide docking, which remains a challenge. We assessed the ESMFold language model, originally designed for protein structure prediction, for its effectiveness in protein-peptide docking. Various docking strategies, including polyglycine linkers and sampling-enhancing modifications, were explored. The number of acceptable-quality models among top-ranking results is comparable to traditional methods and generally lower than AlphaFold-Multimer or Alphafold 3, though ESMFold surpasses it in some cases. The combination of result quality and computational efficiency underscores ESMFold's potential value as a component in a consensus approach for high-throughput peptide design.
引用
收藏
页数:5
相关论文
共 50 条
  • [41] Predicting protein-ligand and protein-peptide interfaces
    Paola Bertolazzi
    Concettina Guerra
    Giampaolo Liuzzi
    The European Physical Journal Plus, 129
  • [42] Protein-peptide composition in the lungs of rats with hyperhomocysteinemia
    Raksha, Nataliia
    Halenova, Tetiana
    Vovk, Tetiana
    Kharchenko, Olga
    Savchuk, Oleksiy
    Samborska, Inga
    Zaichko, Nataliia
    Ostapchenko, Ludmila
    Maievskyi, Oleksandr
    JOURNAL OF BIOLOGICAL RESEARCH-BOLLETTINO DELLA SOCIETA ITALIANA DI BIOLOGIA SPERIMENTALE, 2021, 94 (02): : 67 - 71
  • [43] Redesign of a protein-peptide interaction: Characterization and applications
    Jackrei, Meredith E.
    Valverde, Roberto
    Regan, Lynne
    PROTEIN SCIENCE, 2009, 18 (04) : 762 - 774
  • [44] Determining the binding specificity of protein-peptide recognition
    Wang, Wei
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 244
  • [45] Probabilistic in silico prediction of protein-peptide interactions
    Lehrach, Wolfgang
    Husmeier, Dirk
    Williams, Christopher K. I.
    SYSTEMS BIOLOGY AND REGULATORY GENOMICS, 2007, 4023 : 188 - 197
  • [46] Structural and Dynamic Determinants of Protein-Peptide Recognition
    Dagliyan, Onur
    Proctor, Elizabeth A.
    D'Auria, Kevin M.
    Ding, Feng
    Dokholyan, Nikolay V.
    STRUCTURE, 2011, 19 (12) : 1837 - 1845
  • [47] Structural mining: Self-consistent design on flexible protein-peptide docking and transferable binding affinity potential
    Liu, Zhijie
    Dominy, Brian N.
    Shakhnovich, Eugene I.
    Journal of the American Chemical Society, 2004, 126 (27): : 8515 - 8528
  • [48] A novel multi-objective metaheuristic algorithm for protein-peptide docking and benchmarking on the LEADS-PEP dataset
    Masoudi-Sobhanzadeh, Yosef
    Jafari, Behzad
    Parvizpour, Sepideh
    Pourseif, Mohammad M.
    Omidi, Yadollah
    COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 138
  • [49] Highly Flexible Ligand Docking: Benchmarking of the DockThor Program on the LEADS-PEP Protein-Peptide Data Set
    Santos, Karina B.
    Guedes, Isabella A.
    Karl, Ana L. M.
    Dardenne, Laurent E.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2020, 60 (02) : 667 - 683
  • [50] Structural mining: Self-consistent design on flexible protein-peptide docking and transferable binding affinity potential
    Liu, ZJ
    Dominy, BN
    Shakhnovich, EI
    JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2004, 126 (27) : 8515 - 8528