Protein-Peptide Docking with ESMFold Language Model

被引:0
|
作者
Zalewski, Mateusz [1 ]
Wallner, Bjorn [2 ]
Kmiecik, Sebastian [1 ]
机构
[1] Univ Warsaw, Fac Chem, Biol & Chem Res Ctr, PL-02093 Warsaw, Poland
[2] Linkoping Univ, Dept Phys Chem & Biol, S-58183 Linkoping, Sweden
关键词
PREDICTION;
D O I
10.1021/acs.jctc.4c01585
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Designing peptide therapeutics requires precise peptide docking, which remains a challenge. We assessed the ESMFold language model, originally designed for protein structure prediction, for its effectiveness in protein-peptide docking. Various docking strategies, including polyglycine linkers and sampling-enhancing modifications, were explored. The number of acceptable-quality models among top-ranking results is comparable to traditional methods and generally lower than AlphaFold-Multimer or Alphafold 3, though ESMFold surpasses it in some cases. The combination of result quality and computational efficiency underscores ESMFold's potential value as a component in a consensus approach for high-throughput peptide design.
引用
收藏
页数:5
相关论文
共 50 条
  • [21] Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes
    T. V. Pyrkov
    I. V. Ozerov
    E. D. Balitskaya
    R. G. Efremov
    Russian Journal of Bioorganic Chemistry, 2010, 36 : 446 - 455
  • [22] Molecular docking: The role of noncovalent interactions in the formation of protein-nucleotide and protein-peptide complexes
    Pyrkov, T. V.
    Ozerov, I. V.
    Balitskaya, E. D.
    Efremov, R. G.
    RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY, 2010, 36 (04) : 446 - 455
  • [23] In Silico Peptide Ligation: Iterative Residue Docking and Linking as a New Approach to Predict Protein-Peptide Interactions
    Diharce, Julien
    Cueto, Mickael
    Beltramo, Massimiliano
    Aucagne, Vincent
    Bonnet, Pascal
    MOLECULES, 2019, 24 (07)
  • [24] Interaction of Nanomaterials with Protein-Peptide
    Hazarika, Zaved
    Saikia, Surovi
    Jha, Anupam Nath
    CURRENT PROTEIN & PEPTIDE SCIENCE, 2022, 23 (08) : 548 - 562
  • [25] Predicting Protein-Peptide Interactions: Benchmarking Deep Learning Techniques and a Comparison with Focused Docking
    Shanker, Sudhanshu
    Sanner, Michel F.
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2023, 63 (10) : 3158 - 3170
  • [26] Protein-Peptide Docking with High Conformational Flexibility using CABS-dock Web Tool
    Kouza, Maksim
    Blaszczyk, Maciej
    Kurcinski, Mateusz
    Wieteska, Lukasz
    Debinski, Aleksander
    Kolinski, Andrzej
    Kmiecik, Sebastian
    BIOPHYSICAL JOURNAL, 2016, 110 (03) : 543A - 543A
  • [27] UMPPI: Unveiling Multilevel Protein-Peptide Interaction Prediction via Language Models
    Xiong, Shuwen
    Cai, Jiajie
    Shi, Hua
    Cui, Feifei
    Zhang, Zilong
    Wei, Leyi
    JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2025,
  • [28] NMR-Guided Molecular Docking of a Protein-Peptide Complex Based on Ant Colony Optimization
    Korb, Oliver
    Moeller, Heiko M.
    Exner, Thomas E.
    CHEMMEDCHEM, 2010, 5 (07) : 1001 - 1006
  • [29] Selective protein-peptide interactions at surfaces
    Wang, Wei
    Woodbury, Neal W.
    ACTA BIOMATERIALIA, 2014, 10 (02) : 761 - 768
  • [30] Combining NMR experiments with coarse-grained proteins docking to characterize protein-peptide complexes
    Savarin, Philippe
    Basdevant, Nathalie
    Ha-Duong, Tap
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2012, 243