Methylammonium-Free Perovskite Photovoltaic Modules

被引:0
|
作者
Chu, Liang [2 ,3 ]
Cao, Jinguo [1 ]
Wu, Congcong [1 ]
机构
[1] Hubei Univ, Sch New Energy & Elect Engn, Key Lab Green Preparat & Applicat Funct Mat, Hubei Key Lab Polymer Mat, Wuhan 430062, Peoples R China
[2] Hangzhou Dianzi Univ, Inst Carbon Neutral & New Energy, Hangzhou 310018, Peoples R China
[3] Hangzhou Dianzi Univ, Sch Elect & Informat, Hangzhou 310018, Peoples R China
基金
中国国家自然科学基金;
关键词
perovskite photovoltaic modules; large-area; methylammonium-free; photoactive phase; film growthmechanism; efficiency; stability; industrialization; SOLAR-CELLS; CLASSICAL NUCLEATION; CRYSTAL-GROWTH; EFFICIENT; STABILITY; FILMS; CRYSTALLIZATION; FORMAMIDINIUM; PERFORMANCE; FABRICATION;
D O I
10.1021/acsnano.4c18089
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
For perovskite photovoltaic industrialization, it is essential to simultaneously achieve high conversion efficiency, long-term stability, and scalable fabrication of modules. Halide perovskites with the ABX3 structure are composed of A-site monovalent cations, (e.g., formamidinium (FA+), methylammonium (MA+), and Cs+), B-site divalent cations (predominantly Pb2+), and X-site halide anions. Though the incorporated MA cations can facilitate the nucleation and growth of perovskite films, their volatility undermines the thermal stability. alpha-FAPbI3 exhibits an optimal bandgap, but both it and alpha-CsPbI3 are susceptible to converting into the nonphotoactive delta-phase at room temperature. However, their FACsPbI3 alloy effectively counteracts the imperfections in the tolerance factor, enabling the formation of a room-temperature photoactive phase. Hence, the development of large-area, high-quality, and MA-free perovskite films remains a substantial challenge for efficient photovoltaic modules. This review first discusses the impact of A-site cations on the phase stability of perovskite structures and subsequently examines the film growth mechanism. Then, we summarize the MA-free perovskite photovoltaic modules and highlight advances in the CsPbX3 (Br-/I-), FAPbI3, and FACsPbX3 systems. Finally, we propose potential directions and challenges toward perovskite photovoltaic industrialization.
引用
收藏
页数:22
相关论文
共 50 条
  • [21] Fully Methylammonium-Free Stable Formamidinium Lead Iodide Perovskite Solar Cells Processed under Humid Air Conditions
    Wang, Kun
    Huo, Jiangwei
    Cao, Li
    Yang, Peihui
    Muller-Buschbaum, Peter
    Tong, Yu
    Wang, Hongqiang
    ACS APPLIED MATERIALS & INTERFACES, 2023, 15 (10) : 13353 - 13362
  • [22] Crystallization Control of Methylammonium-Free Perovskite in Two-Step Deposited Printable Triple-Mesoscopic Solar Cells
    Du, Jiankang
    Liu, Shuang
    Wu, Jiawen
    Zhang, Weihua
    Zhang, Wenhao
    Mei, Anyi
    Rong, Yaoguang
    Hu, Yue
    Han, Hongwei
    SOLAR RRL, 2020, 4 (12)
  • [23] Interfacial Embedding for High-Efficiency and Stable Methylammonium-Free Perovskite Solar Cells with Fluoroarene Hydrazine
    Khadka, Dhruba B.
    Shirai, Yasuhiro
    Yanagida, Masatoshi
    Tadano, Terumasa
    Miyano, Kenjiro
    ADVANCED ENERGY MATERIALS, 2022, 12 (38)
  • [24] Effects of ZnI2 doping on the performance of methylammonium-free perovskite solar cells
    Yan, Lei
    Li, Zhenchao
    Niu, Tianqi
    Xu, Xiang
    Xie, Shenkun
    Dong, Guanping
    Xue, Qifan
    Yip, Hin-Lap
    JOURNAL OF APPLIED PHYSICS, 2020, 128 (04)
  • [25] Low-pressure accessible gas-quenching for absolute methylammonium-free perovskite solar cells
    Hou, Tian
    Zhang, Meng
    Yu, Wenjing
    Wang, Xin
    Gu, Zhengying
    Chen, Qian
    Lan, Lan
    Sun, Xiaoran
    Huang, Yuelong
    Zheng, Bolin
    Liu, Xu
    Green, Martin A.
    Hao, Xiaojing
    JOURNAL OF MATERIALS CHEMISTRY A, 2022, 10 (04) : 2105 - 2112
  • [26] Mitigation of Morphological Defects in Methylammonium-Free Formamidinium-Based Perovskite Solar Cells
    Cai, Linfeng
    Suen, Chun Wai
    Lau, Ying Suet
    Lan, Zhaojue
    Han, Jiayin
    Zhu, Furong
    ACS APPLIED ENERGY MATERIALS, 2022, 5 (07) : 8304 - 8312
  • [27] Minimizing voltage deficit in Methylammonium-Free perovskite solar cells via surface reconstruction
    Wang, Chenhui
    Wang, Xiaobing
    He, Zhenhua
    Zhou, Bin
    Qu, Duo
    Wang, Yi
    Hu, Hanwei
    Hu, Qin
    Tu, Yongguang
    CHEMICAL ENGINEERING JOURNAL, 2022, 444
  • [28] Understanding and suppressing non-radiative losses in methylammonium-free wide-bandgap perovskite solar cells
    Oliver, Robert D. J.
    Caprioglio, Pietro
    Pena-Camargo, Francisco
    Buizza, Leonardo R. V.
    Zu, Fengshuo
    Ramadan, Alexandra J.
    Motti, Silvia G.
    Mahesh, Suhas
    McCarthy, Melissa M.
    Warby, Jonathan H.
    Lin, Yen-Hung
    Koch, Norbert
    Albrecht, Steve
    Herz, Laura M.
    Johnston, Michael B.
    Neher, Dieter
    Stolterfoht, Martin
    Snaith, Henry J.
    ENERGY & ENVIRONMENTAL SCIENCE, 2022, 15 (02) : 714 - 726
  • [29] Bulk Incorporation with 4-Methylphenethylammonium Chloride for Efficient and Stable Methylammonium-Free Perovskite and Perovskite-Silicon Tandem Solar Cells
    Duong, The
    Nguyen, Thuan
    Huang, Keqing
    Pham, Huyen
    Adhikari, Sunita Gautam
    Khan, Motiur Rahman
    Duan, Leiping
    Liang, Wensheng
    Fong, Kean Chern
    Shen, Heping
    Bui, Anh Dinh
    Mayon, Azul Osorio
    Truong, Thien
    Tabi, Grace
    Ahmad, Viqar
    Surve, Sachin
    Tong, Jingnan
    Kho, Teng
    Tran-Phu, Thanh
    Lu, Teng
    Zheng, Jianghui
    Paetzold, Ulrich W.
    Lemmer, Uli
    Baillie, Anita Ho
    Liu, Yun
    Andersson, Gunther
    White, Thomas
    Weber, Klaus
    Catchpole, Kylie
    ADVANCED ENERGY MATERIALS, 2023, 13 (09)
  • [30] Loss Analysis in Perovskite Photovoltaic Modules
    Rakocevic, Lucija
    Mundt, Laura E.
    Gehlhaar, Robert
    Merckx, Tamara
    Aernouts, Torn
    Schubert, Martin C.
    Glunz, Stefan W.
    Poortmans, Jef
    SOLAR RRL, 2019, 3 (12):