Synchronization of Chaotic Satellite Systems with Fractional Derivatives Analysis Using Feedback Active Control Techniques

被引:0
|
作者
Kumar, Sanjay [1 ]
Kumar, Amit [2 ]
Gupta, Pooja [3 ]
Prasad, Ram Pravesh [4 ]
Kumar, Praveen [5 ]
机构
[1] Amity Univ, Amity Sch Engn & Technol, Patna 801503, India
[2] Univ Delhi, Atma Ram Sanatan Dharma Coll, Dept Math, New Delhi 110021, India
[3] Univ Delhi, Gargi Coll, Dept Math, New Delhi 110049, India
[4] Univ Delhi, Hansraj Coll, Dept Math, New Delhi 110007, India
[5] Univ Delhi, Ramjas Coll, Dept Math, New Delhi 110007, India
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 10期
关键词
fractional derivative calculus; chaotic satellite systems; synchronization of chaos; DYNAMICS; MODEL;
D O I
10.3390/sym16101319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research article introduces a novel chaotic satellite system based on fractional derivatives. The study explores the characteristics of various fractional derivative satellite systems through detailed phase portrait analysis and computational simulations, employing fractional calculus. We provide illustrations and tabulate the phase portraits of these satellite systems, highlighting the influence of different fractional derivative orders and parameter values. Notably, our findings reveal that chaos can occur even in systems with fewer than three dimensions. To validate our results, we utilize a range of analytical tools, including equilibrium point analysis, dissipative measures, Lyapunov exponents, and bifurcation diagrams. These methods confirm the presence of chaos and offer insights into the system's dynamic behavior. Additionally, we demonstrate effective control of chaotic dynamics using feedback active control techniques, providing practical solutions for managing chaos in satellite systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [21] Predictive control of fractional-order chaotic systems
    Zheng, Yongai
    Ji, Zhilin
    CHAOS SOLITONS & FRACTALS, 2016, 87 : 307 - 313
  • [22] Stabilizing a Class of Chaotic Systems by Using Adaptive Feedback Control
    Wang, Dejin
    Zheng, Yongai
    INTERNATIONAL CONFERENCE ON APPLIED PHYSICS AND INDUSTRIAL ENGINEERING 2012, PT C, 2012, 24 : 1922 - 1927
  • [23] Stabilizing a Class of Chaotic Systems by Using Adaptive Feedback Control
    Wang, Dejin
    Zheng, Yongai
    2010 INTERNATIONAL COLLOQUIUM ON COMPUTING, COMMUNICATION, CONTROL, AND MANAGEMENT (CCCM2010), VOL II, 2010, : 511 - 513
  • [24] Synchronization of Incommensurate Fractional-Order Chaotic Systems with Input Nonlinearities Using a Fuzzy Variable-Structure Control
    Boubellouta, Amina
    Boulkroune, Abdesselem
    ADVANCED CONTROL ENGINEERING METHODS IN ELECTRICAL ENGINEERING SYSTEMS, 2019, 522 : 128 - 142
  • [25] Adaptive synchronization of a class of fractional-order chaotic systems
    Ma Tie-Dong
    Jiang Wei-Bo
    Fu Jie
    Chai Yi
    Chen Li-Ping
    Xue Fang-Zheng
    ACTA PHYSICA SINICA, 2012, 61 (16)
  • [26] A New Method on Synchronization of Fractional-Order Chaotic Systems
    Wang, Zhiliang
    Zhang, Huaguang
    Li, Yongfeng
    Sun, Ning
    2010 CHINESE CONTROL AND DECISION CONFERENCE, VOLS 1-5, 2010, : 3557 - +
  • [27] Chaos Control and Synchronization of a New Fractional Laser Chaotic System
    Eshaghi, Shiva
    Kadkhoda, Nematollah
    Inc, Mustafa
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2024, 23 (05)
  • [28] Modified hybrid combination synchronization of chaotic fractional order systems
    Ojo, Kayode S.
    Ogunjo, Samuel T.
    Fuwape, Ibiyinka A.
    SOFT COMPUTING, 2022, 26 (21) : 11865 - 11872
  • [29] Projective Synchronization of Chaotic Discrete Dynamical Systems via Linear State Error Feedback Control
    Xin, Baogui
    Wu, Zhiheng
    ENTROPY, 2015, 17 (05): : 2677 - 2687
  • [30] Synchronization of a Class of Fractional-order Chaotic Systems via Adaptive Sliding Mode Control
    Jiang, Weibo
    Ma, Tiedong
    2013 IEEE INTERNATIONAL CONFERENCE ON VEHICULAR ELECTRONICS AND SAFETY (ICVES), 2013, : 229 - 233