Synchronization of Chaotic Satellite Systems with Fractional Derivatives Analysis Using Feedback Active Control Techniques

被引:0
|
作者
Kumar, Sanjay [1 ]
Kumar, Amit [2 ]
Gupta, Pooja [3 ]
Prasad, Ram Pravesh [4 ]
Kumar, Praveen [5 ]
机构
[1] Amity Univ, Amity Sch Engn & Technol, Patna 801503, India
[2] Univ Delhi, Atma Ram Sanatan Dharma Coll, Dept Math, New Delhi 110021, India
[3] Univ Delhi, Gargi Coll, Dept Math, New Delhi 110049, India
[4] Univ Delhi, Hansraj Coll, Dept Math, New Delhi 110007, India
[5] Univ Delhi, Ramjas Coll, Dept Math, New Delhi 110007, India
来源
SYMMETRY-BASEL | 2024年 / 16卷 / 10期
关键词
fractional derivative calculus; chaotic satellite systems; synchronization of chaos; DYNAMICS; MODEL;
D O I
10.3390/sym16101319
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This research article introduces a novel chaotic satellite system based on fractional derivatives. The study explores the characteristics of various fractional derivative satellite systems through detailed phase portrait analysis and computational simulations, employing fractional calculus. We provide illustrations and tabulate the phase portraits of these satellite systems, highlighting the influence of different fractional derivative orders and parameter values. Notably, our findings reveal that chaos can occur even in systems with fewer than three dimensions. To validate our results, we utilize a range of analytical tools, including equilibrium point analysis, dissipative measures, Lyapunov exponents, and bifurcation diagrams. These methods confirm the presence of chaos and offer insights into the system's dynamic behavior. Additionally, we demonstrate effective control of chaotic dynamics using feedback active control techniques, providing practical solutions for managing chaos in satellite systems.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Control and synchronization of fractional-order chaotic satellite systems using feedback and adaptive control techniques
    Kumar, Sanjay
    Matouk, Ahmed E.
    Chaudhary, Harindri
    Kant, Shashi
    INTERNATIONAL JOURNAL OF ADAPTIVE CONTROL AND SIGNAL PROCESSING, 2021, 35 (04) : 484 - 497
  • [2] Synchronization of fractional order chaotic systems using active control method
    Agrawal, S. K.
    Srivastava, M.
    Das, S.
    CHAOS SOLITONS & FRACTALS, 2012, 45 (06) : 737 - 752
  • [3] Control and Synchronization of Fractional Unified Chaotic Systems via Active Control Technique
    Yuan Jian
    Shi Bao
    2014 33RD CHINESE CONTROL CONFERENCE (CCC), 2014, : 1977 - 1982
  • [4] Synchronization of incommensurate non-identical fractional order chaotic systems using active control
    Bhalekar, S.
    EUROPEAN PHYSICAL JOURNAL-SPECIAL TOPICS, 2014, 223 (08) : 1495 - 1508
  • [5] Phase and anti-phase synchronization of fractional order chaotic systems via active control
    Taghvafard, Hadi
    Erjaee, G. H.
    COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2011, 16 (10) : 4079 - 4088
  • [6] Synchronization of Chaotic Fractional-Order WINDMI Systems via Linear State Error Feedback Control
    Xin, Baogui
    Chen, Tong
    Liu, Yanqin
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2010, 2010
  • [7] Synchronization and anti-synchronization of a fractional order delayed memristor-based chaotic system using active control
    Ding, Dawei
    Qian, Xin
    Wang, Nian
    Liang, Dong
    MODERN PHYSICS LETTERS B, 2018, 32 (14):
  • [8] Control and synchronization for a class of new chaotic systems via linear feedback
    Zhang, Jianxiong
    Tang, Wansheng
    NONLINEAR DYNAMICS, 2009, 58 (04) : 675 - 686
  • [9] Adaptive Feedback Control for Synchronization of Chaotic Neural Systems with Parameter Mismatches
    Ye, Qian
    Jiang, Zhengxian
    Chen, Tiane
    COMPLEXITY, 2018,
  • [10] Anti-synchronization between identical and non-identical fractional-order chaotic systems using active control method
    Srivastava, M.
    Ansari, S. P.
    Agrawal, S. K.
    Das, S.
    Leung, A. Y. T.
    NONLINEAR DYNAMICS, 2014, 76 (02) : 905 - 914