Ultrafast synthesis of porous Fe3C/carbon hybrid materials via a carbothermal shock reactor for advanced energy storage applications

被引:1
作者
Cao, Jun [1 ]
Ji, Kai-Yue [1 ]
Du, Ming-He [1 ]
Zhang, Chi [2 ]
Sun, Qi [3 ]
Yi, Ying [4 ]
Chai, Ze-Fan [1 ]
Yan, Chun-Jie [1 ]
Deng, Heng [1 ,5 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[3] Guizhou Univ, Coll Mat & Met, Guiyang 550025, Peoples R China
[4] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; HIGH-PERFORMANCE; ANODE MATERIAL; FE3O4; NANOPARTICLES; CARBON; CONVERSION;
D O I
10.1039/d4ta05430j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Template-assisted pyrolysis enables the synthesis of Fe-based carbonaceous materials with a defined morphology and structure from iron-carbon precursors. However, conventional tangible templates are costly and have limited applications, and their removal process is time-consuming and environmentally harmful. Here, we employ an ultrafast heating technique (1 second to 1800 degrees C) using a carbothermal shock reactor to treat iron-carbon precursors. The high-density volatile vapor generated during the rapid pyrolytic carbonization of the precursor acts as a pore-forming agent, resulting in a porous carbon matrix. This high-density vapor also restricts the growth area of iron-based nanoparticles, promoting them to form ultrafine small sizes through confined synthesis. Finally, we successfully prepared the CTS-Fe-C-1800 hybrid material containing a porous carbon matrix and iron carbide nanoparticles and tested its electrochemical performance as a multifunctional electrode. As an electrode, the CTS-Fe-C-1800 supercapacitor (SC) exhibits a high specific capacity of 425.5 F g-1 at 0.5 A g-1. Moreover, the CTS-Fe-C-1800 flexible micro-supercapacitor (MSC), prepared using a PVA/KOH gel electrolyte and CTS-Fe-C-1800, demonstrates an impressive energy density of 71.49 W h kg g-1 at 0.637 kW kg g-1. Additionally, when employed as an anode electrode in a Li-ion battery (LIB), the CTS-Fe-C LIB maintains a capacity of 801.2 mA h g-1 after 1000 cycles at 1 A g-1, surpassing the performance of the majority of reported Fe-C anode electrodes.
引用
收藏
页码:7515 / 7528
页数:14
相关论文
共 54 条
[21]   Catalytic decomposition of sulfur trioxide on the binary metal oxide catalysts of Fe/Al and Fe/Ti [J].
Kim, Tae-Ho ;
Gong, Gyeong-Taek ;
Lee, Byung Gwon ;
Lee, Kwan-Young ;
Jeon, Hee-Young ;
Shin, Chae-Ho ;
Kim, Honggon ;
Jung, Kwang-Deog .
APPLIED CATALYSIS A-GENERAL, 2006, 305 (01) :39-45
[22]   High stability graphene oxide aerogel supported ultrafine Fe3O4 particles with superior performance as a Li-ion battery anode [J].
Kopuklu, Buse Bulut ;
Tasdemir, Adnan ;
Gursel, Selmiye Alkan ;
Yurum, Alp .
CARBON, 2021, 174 :158-172
[23]   Scalable Dry Production Process of a Superior 3D Net-Like Carbon-Based Iron Oxide Anode Material for Lithium-Ion Batteries [J].
Li, Min ;
Du, Haoran ;
Kuai, Long ;
Huang, Kuangfu ;
Xia, Yuanyuan ;
Geng, Baoyou .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (41) :12649-12653
[24]   Core-Shell Si/C Nanospheres Embedded in Bubble Sheet-like Carbon Film with Enhanced Performance as Lithium Ion Battery Anodes [J].
Li, Wenyue ;
Tang, Yongbing ;
Kang, Wenpei ;
Zhang, Zhenyu ;
Yang, Xia ;
Zhu, Yu ;
Zhang, Wenjun ;
Lee, Chun-Sing .
SMALL, 2015, 11 (11) :1345-1351
[25]   Transition Metal Compounds Family for Li-S Batteries: The DFT-Guide for Suppressing Polysulfides Shuttle [J].
Liang, Qi ;
Wang, Sizhe ;
Yao, Yao ;
Dong, Peng ;
Song, Haojie .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (32)
[26]   Design and Construction of Carbon-Coated Fe3O4/Cr2O3 Heterostructures Nanoparticles as High-Performance Anodes for Lithium Storage [J].
Liu, Huan ;
Zhang, Weibin ;
Wang, Weili ;
Han, Guifang ;
Zhang, Jingde ;
Zhang, Shiwei ;
Wang, Jianchuan ;
Du, Yong .
SMALL, 2023, 19 (52)
[27]   Laser-oxidized Fe3O4 nanoparticles anchored on 3D macroporous graphene flexible electrodes for ultrahigh-energy in-plane hybrid micro-supercapacitors [J].
Liu, Huilong ;
Moon, Kyoung-sik ;
Li, Jiaxiong ;
Xie, Yingxi ;
Liu, Junbo ;
Sun, Zhijian ;
Lu, Longsheng ;
Tang, Yong ;
Wong, Ching-Ping .
NANO ENERGY, 2020, 77
[28]   Metal-organic frameworks derived porous carbon, metal oxides and metal sulfides-based compounds for supercapacitors application [J].
Liu, Yu ;
Xu, Xiaomin ;
Shao, Zongping ;
Jiang, San Ping .
ENERGY STORAGE MATERIALS, 2020, 26 :1-22
[29]   3D Amorphous Carbon with Controlled Porous and Disordered Structures as a High-Rate Anode Material for Sodium-Ion Batteries [J].
Lu, Peng ;
Sun, Yi ;
Xiang, Hongfa ;
Liang, Xin ;
Yu, Yan .
ADVANCED ENERGY MATERIALS, 2018, 8 (08)
[30]   Structural composite supercapacitor using carbon nanotube mat electrodes with interspersed metallic iron nanoparticles [J].
Mapleback, Benjamin J. ;
Simons, Tristan J. ;
Shekibi, Youssof ;
Ghorbani, Kamran ;
Rider, Andrew N. .
ELECTROCHIMICA ACTA, 2020, 331