Ultrafast synthesis of porous Fe3C/carbon hybrid materials via a carbothermal shock reactor for advanced energy storage applications

被引:1
作者
Cao, Jun [1 ]
Ji, Kai-Yue [1 ]
Du, Ming-He [1 ]
Zhang, Chi [2 ]
Sun, Qi [3 ]
Yi, Ying [4 ]
Chai, Ze-Fan [1 ]
Yan, Chun-Jie [1 ]
Deng, Heng [1 ,5 ]
机构
[1] China Univ Geosci, Fac Mat Sci & Chem, Wuhan 430074, Peoples R China
[2] Univ Chinese Acad Sci, Hangzhou Inst Adv Study, Hangzhou 310024, Peoples R China
[3] Guizhou Univ, Coll Mat & Met, Guiyang 550025, Peoples R China
[4] China Univ Geosci, Sch Mech Engn & Elect Informat, Wuhan 430074, Peoples R China
[5] China Univ Geosci, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
基金
中国国家自然科学基金;
关键词
METAL-ORGANIC FRAMEWORKS; HIGH-PERFORMANCE; ANODE MATERIAL; FE3O4; NANOPARTICLES; CARBON; CONVERSION;
D O I
10.1039/d4ta05430j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Template-assisted pyrolysis enables the synthesis of Fe-based carbonaceous materials with a defined morphology and structure from iron-carbon precursors. However, conventional tangible templates are costly and have limited applications, and their removal process is time-consuming and environmentally harmful. Here, we employ an ultrafast heating technique (1 second to 1800 degrees C) using a carbothermal shock reactor to treat iron-carbon precursors. The high-density volatile vapor generated during the rapid pyrolytic carbonization of the precursor acts as a pore-forming agent, resulting in a porous carbon matrix. This high-density vapor also restricts the growth area of iron-based nanoparticles, promoting them to form ultrafine small sizes through confined synthesis. Finally, we successfully prepared the CTS-Fe-C-1800 hybrid material containing a porous carbon matrix and iron carbide nanoparticles and tested its electrochemical performance as a multifunctional electrode. As an electrode, the CTS-Fe-C-1800 supercapacitor (SC) exhibits a high specific capacity of 425.5 F g-1 at 0.5 A g-1. Moreover, the CTS-Fe-C-1800 flexible micro-supercapacitor (MSC), prepared using a PVA/KOH gel electrolyte and CTS-Fe-C-1800, demonstrates an impressive energy density of 71.49 W h kg g-1 at 0.637 kW kg g-1. Additionally, when employed as an anode electrode in a Li-ion battery (LIB), the CTS-Fe-C LIB maintains a capacity of 801.2 mA h g-1 after 1000 cycles at 1 A g-1, surpassing the performance of the majority of reported Fe-C anode electrodes.
引用
收藏
页码:7515 / 7528
页数:14
相关论文
共 54 条
[1]   Organic ligand-facilitated in situ exsolution of CoFe alloys over Ba0.5Sr0.5Co0.8Fe0.2O3-δ perovskite toward enhanced oxygen electrocatalysis for rechargeable Zn-air batteries [J].
Arafat, Yasir ;
Azhar, Muhammad Rizwan ;
Zhong, Yijun ;
O'Hayre, Ryan ;
Tade, Moses O. ;
Shao, Zongping .
JOURNAL OF MATERIALS CHEMISTRY A, 2023, 11 (24) :12856-12865
[2]   Laser-induced transient conversion of rhodochrosite/polyimide into multifunctional MnO2/graphene electrodes for energy storage applications [J].
Cao, Jun ;
Yan, Chunjie ;
Chai, Zefan ;
Wang, Zhigang ;
Du, Minghe ;
Li, Gen ;
Wang, Huanwen ;
Deng, Heng .
JOURNAL OF COLLOID AND INTERFACE SCIENCE, 2024, 653 :606-616
[3]   Origin of extra capacity in the solid electrolyte interphase near high-capacity iron carbide anodes for Li ion batteries [J].
Chen, Dongjiang ;
Feng, Chao ;
Han, Yupei ;
Yu, Bo ;
Chen, Wei ;
Zhou, Ziqi ;
Chen, Ning ;
Goodenough, John B. ;
He, Weidong .
ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) :2924-2937
[4]   Electrochemical energy storage devices working in extreme conditions [J].
Chen, Mingzhe ;
Zhang, Yanyan ;
Xing, Guichuan ;
Chou, Shu-Lei ;
Tang, Yuxin .
ENERGY & ENVIRONMENTAL SCIENCE, 2021, 14 (06) :3323-3351
[5]   Self-optimising reactive extractions: towards the efficient development of multi-step continuous flow processes [J].
Clayton, Adam D. ;
Power, Luke A. ;
Reynolds, William R. ;
Ainsworth, Caroline ;
Hose, David R. J. ;
Jones, Martin F. ;
Chamberlain, Thomas W. ;
Blacker, A. John ;
Bourne, Richard A. .
JOURNAL OF FLOW CHEMISTRY, 2020, 10 (01) :199-206
[6]   Template-assisted loading of Fe3O4 nanoparticles inside hollow carbon "rooms" to achieve high volumetric lithium storage [J].
Cui, Yongpeng ;
Feng, Wenting ;
Liu, Wei ;
Li, Jiajia ;
Zhang, Yuan ;
Du, Yongxu ;
Li, Mingzhu ;
Huang, Wei ;
Wang, Huanlei ;
Liu, Shuang .
NANOSCALE, 2020, 12 (19) :10816-10826
[7]   Phase controlled synthesis of transition metal carbide nanocrystals by ultrafast flash Joule heating [J].
Deng, Bing ;
Wang, Zhe ;
Chen, Weiyin ;
Li, John Tianci ;
Luong, Duy Xuan ;
Carter, Robert A. ;
Gao, Guanhui ;
Yakobson, Boris, I ;
Zhao, Yufeng ;
Tour, James M. .
NATURE COMMUNICATIONS, 2022, 13 (01)
[8]   Sustainable wood electronics by iron-catalyzed laser-induced graphitization for large-scale applications [J].
Dreimol, Christopher H. ;
Guo, Huizhang ;
Ritter, Maximilian ;
Keplinger, Tobias ;
Ding, Yong ;
Gunther, Roman ;
Poloni, Erik ;
Burgert, Ingo ;
Panzarasa, Guido .
NATURE COMMUNICATIONS, 2022, 13 (01)
[9]   Unveiling the Potential of Covalent Organic Frameworks for Energy Storage: Developments, Challenges, and Future Prospects [J].
Dubey, Prashant ;
Shrivastav, Vishal ;
Boruah, Tribani ;
Zoppellaro, Giorgio ;
Zboril, Radek ;
Bakandritsos, Aristides ;
Sundriyal, Shashank .
ADVANCED ENERGY MATERIALS, 2024, 14 (24)
[10]  
Gao J., 2023, Angew. Chem., V135, DOI DOI 10.1002/ANGE.202307874