Ethical Challenges and Opportunities in Applying Artificial Intelligence to Cardiovascular Medicine

被引:6
作者
Lewin, Stephen [1 ]
Chetty, Riti [1 ]
Ihdayhid, Abdul Rahman [1 ,2 ,3 ]
Dwivedi, Girish [1 ,2 ,4 ]
机构
[1] Fiona Stanley Hosp, Dept Cardiol, Perth, WA, Australia
[2] Harry Perkins Inst Med Res, Perth, WA, Australia
[3] Curtin Univ, Med Sch, Perth, WA, Australia
[4] Univ Western Australia, Sch Med, Perth, WA, Australia
关键词
RHEUMATIC HEART-DISEASE; BURNOUT; HEALTH; AUTONOMY; FUTURE; IMPACT;
D O I
10.1016/j.cjca.2024.06.029
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Much anticipation surrounds artificial fi cial intelligence's ' s (AI) emergence as a promising tool in health care. It offers potential to revolutionise clinical practice through assistive and autonomous operation. The high prevalence of cardiac disease globally provides an opportunity for AI technology to increase health care efficiency fi ciency and improve patient outcomes. This article explores the ethical considerations necessary for safe and acceptable implantation of AI within the health care space. We aim to highlight several challenges such as data privacy, consent, sustainability, and cybersecurity. In addition, we outline the future opportunities for AI use in cardiovascular medicine. Overall, we argue that AI deployment demands robust regulation, transparent algorithms, and safeguarding of patient privacy.
引用
收藏
页码:1897 / 1906
页数:10
相关论文
共 74 条
  • [1] Academy of Medical Royal Colleges, Artificial intelligence in healthcare
  • [2] Explainable Artificial Intelligence (XAI): What we know and what is left to attain Trustworthy Artificial Intelligence
    Ali, Sajid
    Abuhmed, Tamer
    El-Sappagh, Shaker
    Muhammad, Khan
    Alonso-Moral, Jose M.
    Confalonieri, Roberto
    Guidotti, Riccardo
    Del Ser, Javier
    Diaz-Rodriguez, Natalia
    Herrera, Francisco
    [J]. INFORMATION FUSION, 2023, 99
  • [3] [Anonymous], 2018, STAT
  • [4] Exploring perceptions of healthcare technologies enabled by artificial intelligence: an online, scenario-based survey
    Antes, Alison L.
    Burrous, Sara
    Sisk, Bryan A.
    Schuelke, Matthew J.
    Keune, Jason D.
    DuBois, James M.
    [J]. BMC MEDICAL INFORMATICS AND DECISION MAKING, 2021, 21 (01)
  • [5] Use of Artificial Intelligence in Improving Outcomes in Heart Disease: A Scientific Statement From the American Heart Association
    Armoundas, Antonis A.
    Narayan, Sanjiv M.
    Arnett, Donna K.
    Spector-Bagdady, Kayte
    Bennett, Derrick A.
    Celi, Leo Anthony
    Friedman, Paul A.
    Gollob, Michael H.
    Hall, Jennifer L.
    Kwitek, Anne E.
    Lett, Elle
    Menon, Bijoy K.
    Sheehan, Katherine A.
    Al-Zaiti, Salah S.
    [J]. CIRCULATION, 2024, 149 (14) : e1028 - e1050
  • [6] Artificial intelligence in cardiology: the debate continues
    Asselbergs, Folkert W.
    Fraser, Alan G.
    [J]. EUROPEAN HEART JOURNAL - DIGITAL HEALTH, 2021, 2 (04): : 721 - 726
  • [7] Beauchamp TL., 2013, Principles of bioethics, V7th
  • [8] A Human-Centered Evaluation of a Deep Learning System Deployed in Clinics for the Detection of Diabetic Retinopathy
    Beede, Emma
    Baylor, Elizabeth
    Hersch, Fred
    Iurchenko, Anna
    Wilcox, Lauren
    Ruamviboonsuk, Paisan
    Vardoulakis, Laura M.
    [J]. PROCEEDINGS OF THE 2020 CHI CONFERENCE ON HUMAN FACTORS IN COMPUTING SYSTEMS (CHI'20), 2020,
  • [9] On the Dangers of Stochastic Parrots: Can Language Models Be Too Big?
    Bender, Emily M.
    Gebru, Timnit
    McMillan-Major, Angelina
    Shmitchell, Shmargaret
    [J]. PROCEEDINGS OF THE 2021 ACM CONFERENCE ON FAIRNESS, ACCOUNTABILITY, AND TRANSPARENCY, FACCT 2021, 2021, : 610 - 623
  • [10] Bitterman DS, 2020, LANCET DIGIT HEALTH, V2, pE447, DOI 10.1016/S2589-7500(20)30187-4