Regulating structure of nanofiltration membrane via bi-directional interfacial polymerization for enhanced Li+/Mg2+ separation

被引:0
|
作者
Dong, Jian [1 ]
Wang, Yi [1 ]
Dong, Liangliang [1 ]
Kaneko, Tatsuo [1 ]
Dong, Weifu [1 ]
Shi, Dongjian [1 ]
Chen, Mingqing [1 ]
机构
[1] Jiangnan Univ, Sch Chem & Mat Engn, Key Lab Synthet & Biol Colloids, Minist Educ, Wuxi 214122, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Nanofiltration membrane; Bi-directional interfacial polymerization; Enhanced permselectivity; Li + /Mg 2+separation;
D O I
10.1016/j.jwpe.2024.106759
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
To address the membrane challenges such as the trade-off effect between water permeance and separation selectivity, development of a desirable nanofiltration membrane structure is crucial. And, it is important to design a positively charged surface to enhance charge repulsion force between membrane surface and ions due to lithium (Li) extraction problem as the close hydration diameter of magnesium (Mg) and lithium ions. Herein, a strategy that involves regulating membrane structure to create a loose and dense double-layer structure via bidirectional interfacial polymerization has been proposed to form selectivity-enhanced nanofiltration membranes for Li+/Mg2+ separation. The incorporation of dopamine (DA) and trimesoyl chloride (TMC) in first loose layer could improve the membrane stability, while the amine groups from polyethyleneimine (PEI) or polyvinylamine (PVAm) in the second dense layer surface, provided by rich amine polymers, could improve the rejection of divalent magnesium ion. The as-fabricated membrane DA-TMC-PEI shows enhanced permeance (around 15.4 L m- 2 h- 1 bar- 1) and the membrane DA-TMC-PVAm demonstrates outstanding ion selectivity with Li+/Mg2+ separation factor of 30. Moreover, the DA-TMC-PEI and DA-TMC-PVAm membranes could efficiently purify the ratio of Mg2+/Li+ solution from 50 to 0.43. We believe the strategy could provide a promising potential in lithium extraction.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Aligned amino-functionalized γ-cyclodextrin nanofiltration membrane via customized interfacial polymerization for precise Li+/Mg2+ separation
    Zhao, Yanli
    Cao, Ziqi
    Liang, Yanxiang
    Liang, Zhichen
    Ling, Keyin
    Zhou, Feiyan
    Guo, Changsheng
    Qian, Yao
    Liu, Pengbi
    Liu, Xi
    Wang, Chunguang
    Zhang, Mengchen
    Zhang, Qinglei
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 363
  • [2] Polyamide composite nanofiltration membrane via a combination of polydopamine grafting and reverse interfacial polymerization for high Mg2+/Li+ separation capacity
    Yu, Dongsheng
    Li, Min
    Zhou, Huacong
    Liang, Xiangfeng
    Shou, Qinghui
    Liu, Huizhou
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 355
  • [3] Fabrication of positively charged nanofiltration membrane with uniform charge distribution by reversed interfacial polymerization for Mg2+/Li+ separation
    Li, Yunhao
    Wang, Shuhao
    Wu, Wenyuan
    Yu, Haijun
    Che, Ruxin
    Kang, Guodong
    Cao, Yiming
    JOURNAL OF MEMBRANE SCIENCE, 2022, 659
  • [4] Investigation of Mg2+/Li+ Separation by Nanofiltration
    Yang Gang
    Shi Hong
    Liu Wenqiang
    Xing Weihong
    Xu Nanping
    CHINESE JOURNAL OF CHEMICAL ENGINEERING, 2011, 19 (04) : 586 - 591
  • [5] Preparation of Electro- nanofiltration Membranes with High Li+/Mg2+ Separation Performance via Sequential Interfacial Polymerization
    Liu, Huili
    Wang, Jing
    Chen, Jiashuai
    Song, Zhihao
    Jiang, Yumeng
    Guo, Zhiyuan
    Zhang, Panpan
    Ji, Zhiyong
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2024, 45 (06):
  • [6] Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation
    Wu, Ming-Bang
    Ye, Hao
    Zhu, Zhi-Yuan
    Chen, Guo-Tao
    Ma, Lu-Lin
    Liu, Shi-Cheng
    Liu, Lin
    Yao, Juming
    Xu, Zhi-Kang
    Journal of Membrane Science, 2022, 644
  • [7] Positively-charged nanofiltration membranes constructed via gas/liquid interfacial polymerization for Mg2+/Li+ separation
    Wu, Ming-Bang
    Ye, Hao
    Zhu, Zhi-Yuan
    Chen, Guo-Tao
    Ma, Lu-Lin
    Liu, Shi-Cheng
    Liu, Lin
    Yao, Juming
    Xu, Zhi-Kang
    JOURNAL OF MEMBRANE SCIENCE, 2022, 644
  • [8] Lysine-regulated turing structure membrane via interfacial polymerization for enhanced Li+/Mg2+separation
    Tian, Chenxi
    Lei, Da
    Qian, Yongchao
    Kong, Xiang-Yu
    Liu, Zhong
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 358
  • [9] A positively charged PI nanofiltration membrane with good separation for Li+ and Mg2+
    Bi, Qiuyan
    Xu, Shiai
    DESALINATION AND WATER TREATMENT, 2020, 198 : 98 - 107
  • [10] Enhanced Mg2+/Li+ separation by nanofiltration membrane through surface modification using spirocyclic diamine
    Guo, Xiang
    Zhao, Bin
    Wang, Liang
    Zhang, Zhaohui
    Li, Jixiang
    SEPARATION AND PURIFICATION TECHNOLOGY, 2025, 364