Propensity Score Methods for Confounding Control in Observational Studies of Therapeutics for COVID-19 Infection

被引:0
作者
Hurwitz, Kathleen E. [1 ]
Rathnayaka, Nuvan [1 ]
Hendrickson, Kayla [1 ]
Brookhart, M. Alan [2 ]
机构
[1] Target RWE, Epidemiol, Durham, NC USA
[2] Duke Univ, Dept Populat Hlth Sci, 215 Morris St,DUMC 104023, Durham, NC 27710 USA
关键词
observational studies; propensity score matching; COVID-19; inverse probability of treatment weighting; confounding; INFLUENZA VACCINE EFFECTIVENESS; INVERSE PROBABILITY; CAUSAL INFERENCE; SENSITIVITY-ANALYSIS; BIAS; OUTCOMES; ADJUSTMENT; KNOWLEDGE; DIAGRAMS; TRIAL;
D O I
10.1093/cid/ciae516
中图分类号
R392 [医学免疫学]; Q939.91 [免疫学];
学科分类号
100102 ;
摘要
The authors provide a brief overview of different propensity score methods that can be used in observational research studies that lack randomization. Under specific assumptions, these methods result in unbiased estimates of causal effects, but the different ways propensity scores are used may require different assumptions and result in estimated treatment effects that can have meaningfully different interpretations. The authors review these issues and consider their implications for studies of therapeutics for coronavirus disease 2019.
引用
收藏
页码:S131 / S136
页数:6
相关论文
共 45 条
  • [11] Control Outcomes and Exposures for Improving Internal Validity of Nonrandomized Studies
    Dusetzina, Stacie B.
    Brookhart, M. Alan
    Maciejewski, Matthew L.
    [J]. HEALTH SERVICES RESEARCH, 2015, 50 (05) : 1432 - 1451
  • [12] All your data are always missing: incorporating bias due to measurement error into the potential outcomes framework
    Edwards, Jessie K.
    Cole, Stephen R.
    Westreich, Daniel
    [J]. INTERNATIONAL JOURNAL OF EPIDEMIOLOGY, 2015, 44 (04) : 1452 - 1459
  • [13] Comparative effectiveness of ZUMA-5 (axi-cel) vs SCHOLAR-5 external control in relapsed/refractory follicular lymphoma
    Ghione, Paola
    Palomba, M. Lia
    Patel, Anik R.
    Bobillo, Sabela
    Deighton, Kevin
    Jacobson, Caron A.
    Nahas, Myrna
    Hatswell, Anthony J.
    Jung, A. Scott
    Kanters, Steve
    Snider, Julia Thornton
    Neelapu, Sattva S.
    Ribeiro, Maria Teresa
    Brookhart, M. Alan
    Ghesquieres, Herve
    Radford, John
    Gribben, John G.
    [J]. BLOOD, 2022, 140 (08) : 851 - 860
  • [14] Considerations in characterizing real-world data relevance and quality for regulatory purposes: A commentary
    Girman, Cynthia J.
    Ritchey, Mary E.
    Zhou, Wei
    Dreyer, Nancy A.
    [J]. PHARMACOEPIDEMIOLOGY AND DRUG SAFETY, 2019, 28 (04) : 439 - 442
  • [15] Glasziou Paul, 2024, Wellcome Open Res, V9, P20, DOI 10.12688/wellcomeopenres.19305.1
  • [16] Blinatumomab vs historical standard therapy of adult relapsed/refractory acute lymphoblastic leukemia
    Goekbuget, N.
    Kelsh, M.
    Chia, V.
    Advani, A.
    Bassan, R.
    Dombret, H.
    Doubek, M.
    Fielding, A. K.
    Giebel, S.
    Haddad, V.
    Hoelzer, D.
    Holland, C.
    Ifrah, N.
    Katz, A.
    Maniar, T.
    Martinelli, G.
    Morgades, M.
    O'Brien, S.
    Ribera, J-M
    Rowe, J. M.
    Stein, A.
    Topp, M.
    Wadleigh, M.
    Kantarjian, H.
    [J]. BLOOD CANCER JOURNAL, 2016, 6 : e473 - e473
  • [17] Causal diagrams for epidemiologic research
    Greenland, S
    Pearl, J
    Robins, JM
    [J]. EPIDEMIOLOGY, 1999, 10 (01) : 37 - 48
  • [18] Causal knowledge as a prerequisite for confounding evaluation:: An application to birth defects epidemiology
    Hernán, MA
    Hernández-Díaz, S
    Werler, MM
    Mitchell, AA
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2002, 155 (02) : 176 - 184
  • [19] Using Big Data to Emulate a Target Trial When a Randomized Trial Is Not Available
    Hernan, Miguel A.
    Robins, James M.
    [J]. AMERICAN JOURNAL OF EPIDEMIOLOGY, 2016, 183 (08) : 758 - 764
  • [20] Toward causal inference with interference
    Hudgens, Michael G.
    Halloran, M. Elizabeth
    [J]. JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2008, 103 (482) : 832 - 842