Within the last two decades, additive manufacturing (AM), a. k.a. 3D printing, has provided promising solutions for producing near-net-shape components with intricate geometries. From the material perspective, titanium alloys, one of humankind's most essential structural materials, are being considered the first candidate for AMed parts due to their unique characteristics in strength-weight-corrosion combinations. However, measuring the mechanical properties of designed geometry remains a challenge due to the ineffectiveness of conventional standard tensile specimens in assessing the site-specific and intricate geometries. In AM, the current approach often consists of evaluating standard-sized samples with the assumption that components with complex geometries possess comparable mechanical properties, even though they may have undergone different thermal processes in various situations. Hence, combining the microstructural characterization, this study aims to investigate the mechanical properties of direct energy deposition (DED) Ti-6Al-4V through a newly designed miniature tensile test (M-TT) specimen. The as-built specimen showed ultimate tensile strength (UTS) of similar to 1305.3 MPa and elongation of similar to 8.6 % with the mixed basketweave and alpha-colony microstructure. However, the DED Ti-6Al-4V specimen heat-treated at 850 degrees C exhibited the highest average elongation of similar to 13.2 % and decent UTS of similar to 1240.3 MPa with the alpha+beta microstructure.