Supervised structure learning

被引:0
作者
Friston, Karl J. [1 ,2 ]
Da Costa, Lancelot [1 ,2 ,3 ]
Tschantz, Alexander [2 ,6 ]
Kiefer, Alex [2 ]
Salvatori, Tommaso [2 ]
Neacsu, Victorita [1 ]
Koudahl, Magnus [2 ]
Heins, Conor [2 ]
Sajid, Noor [1 ]
Markovic, Dimitrije [5 ]
Parr, Thomas [4 ]
Verbelen, Tim [2 ]
Buckley, Christopher L. [2 ,6 ]
机构
[1] UCL, Inst Neurol, Wellcome Trust Ctr Neuroimaging, London, England
[2] VERSES AI Res Lab, Los Angeles, CA 90016 USA
[3] Imperial Coll London, Dept Math, London, England
[4] Univ Oxford, Nuffield Dept Clin Neurosci, Oxford, England
[5] Tech Univ Dresden, Chair Cognit Computat Neurosci, Dresden, Germany
[6] Univ Sussex, Sch Engn & Informat, Brighton, England
基金
英国工程与自然科学研究理事会;
关键词
Active inference; Active learning; Disentanglement; Structure learning; Bayesian model selection; Planning as inference; Expected free energy; NICHE CONSTRUCTION; RECEPTIVE-FIELD; INFORMATION; MODELS; HIPPOCAMPUS; COMPLEXITY; EQUATIONS; NETWORKS; NUMBER; TERMS;
D O I
10.1016/j.biopsycho.2024.108891
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
This paper concerns structure learning or discovery of discrete generative models. It focuses on Bayesian model selection and the assimilation of training data or content, with a special emphasis on the order in which data are ingested. A key move-in the ensuing schemes-is to place priors on the selection of models, based upon expected free energy. In this setting, expected free energy reduces to a constrained mutual information, where the constraints inherit from priors over outcomes (i.e., preferred outcomes). The resulting scheme is first used to perform image classification on the MNIST dataset to illustrate the basic idea, and then tested on a more challenging problem of discovering models with dynamics, using a simple sprite-based visual disentanglement paradigm and the Tower of Hanoi (cf., blocks world) problem. In these examples, generative models are constructed autodidactically to recover (i.e., disentangle) the factorial structure of latent states-and their characteristic paths or dynamics.
引用
收藏
页数:25
相关论文
共 50 条
[21]   Efficient Heuristics for Discriminative Structure Learning of Bayesian Network Classifiers [J].
Pernkopf, Franz ;
Bilmes, Jeff A. .
JOURNAL OF MACHINE LEARNING RESEARCH, 2010, 11 :2323-2360
[22]   Spectroscopy Approaches for Food Safety Applications: Improving Data Efficiency Using Active Learning and Semi-supervised Learning [J].
Zhang, Huanle ;
Wisuthiphaet, Nicharee ;
Cui, Hemiao ;
Nitin, Nitin ;
Liu, Xin ;
Zhao, Qing .
FRONTIERS IN ARTIFICIAL INTELLIGENCE, 2022, 5
[23]   Testing conditional independence in supervised learning algorithms [J].
Watson, David S. ;
Wright, Marvin N. .
MACHINE LEARNING, 2021, 110 (08) :2107-2129
[24]   Supervised machine learning tools: a tutorial for clinicians [J].
Lo Vercio, Lucas ;
Amador, Kimberly ;
Bannister, Jordan J. ;
Crites, Sebastian ;
Gutierrez, Alejandro ;
MacDonald, M. Ethan ;
Moore, Jasmine ;
Mouches, Pauline ;
Rajashekar, Deepthi ;
Schimert, Serena ;
Subbanna, Nagesh ;
Tuladhar, Anup ;
Wang, Nanjia ;
Wilms, Matthias ;
Winder, Anthony ;
Forkert, Nils D. .
JOURNAL OF NEURAL ENGINEERING, 2020, 17 (06)
[25]   Mining relational data from text: From strictly supervised to weakly supervised learning [J].
Zhang, Zhu .
INFORMATION SYSTEMS, 2008, 33 (03) :300-314
[26]   Social-Structure Learning [J].
Gershman, Samuel J. ;
Cikara, Mina .
CURRENT DIRECTIONS IN PSYCHOLOGICAL SCIENCE, 2020, 29 (05) :460-466
[27]   Genetic Classification of Populations Using Supervised Learning [J].
Bridges, Michael ;
Heron, Elizabeth A. ;
O'Dushlaine, Colm ;
Segurado, Ricardo ;
Morris, Derek ;
Corvin, Aiden ;
Gill, Michael ;
Pinto, Carlos .
PLOS ONE, 2011, 6 (05)
[28]   Unbiased Generative Semi-Supervised Learning [J].
Fox-Roberts, Patrick ;
Rosten, Edward .
JOURNAL OF MACHINE LEARNING RESEARCH, 2014, 15 :367-443
[29]   Supervised learning via smoothed Polya trees [J].
Cipolli, William, III ;
Hanson, Timothy .
ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2019, 13 (04) :877-904
[30]   Supervised dictionary learning with multiple classifier integration [J].
Quan, Yuhui ;
Xu, Yong ;
Sun, Yuping ;
Huang, Yan .
PATTERN RECOGNITION, 2016, 55 :247-260