Ulam-Hyers and Generalized Ulam-Hyers Stability of Fractional Differential Equations with Deviating Arguments

被引:0
作者
Dilna, Natalia [1 ]
Fekete, Gusztav [2 ]
Langerova, Martina [1 ,3 ]
Toth, Balazs [4 ]
机构
[1] Slovak Acad Sci, Math Inst, Bratislava 81473, Slovakia
[2] Szecheny Istvan Univ, AUDI Hungaria Fac Vehicle Engn, Dept Mat Sci & Technol, H-9026 Gyor, Hungary
[3] Slovak Univ Technol Bratislava, Inst Informat Engn Automat & Math, Bratislava 81237, Slovakia
[4] Univ Miskolc, Inst Appl Mech, H-3515 Miskolc, Hungary
关键词
Caputo derivative; Krasnoselskii's fixed point theorem; solvability; UH stability; GUH stability; EXISTENCE;
D O I
10.3390/math12213418
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study the initial value problem for the fractional differential equation with multiple deviating arguments. By using Krasnoselskii's fixed point theorem, the conditions of solvability of the problem are obtained. Furthermore, we establish Ulam-Hyers and generalized Ulam-Hyers stability of the fractional functional differential problem. Finally, two examples are presented to illustrate our results, one is with a pantograph-type equation and the other is numerical.
引用
收藏
页数:15
相关论文
共 30 条
[1]   Nonlinear Piecewise Caputo Fractional Pantograph System with Respect to Another Function [J].
Abdo, Mohammed S. S. ;
Shammakh, Wafa ;
Alzumi, Hadeel Z. Z. ;
Alghamd, Najla ;
Albalwi, M. Daher .
FRACTAL AND FRACTIONAL, 2023, 7 (02)
[3]  
Azbelev N. V., 1995, Introduction to the Theory of Linear Functional Differential Equations
[4]   EXISTENCE OF SOLUTIONS OF NONLINEAR DIFFERENTIAL-EQUATIONS WITH DEVIATING ARGUMENTS [J].
BALACHANDRAN, K ;
ILAMARAN, S .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 1991, 44 (03) :467-476
[5]   An Existence Result for Nonlinear Fractional Differential Equations on Banach Spaces [J].
Benchohra, Mouffak ;
Cabada, Alberto ;
Seba, Djamila .
BOUNDARY VALUE PROBLEMS, 2009,
[6]  
Dilna N., 2022, J MATH SCI-U TOKYO, V265, P577, DOI [10.1007/s10958-022-06072-8, DOI 10.1007/S10958-022-06072-8]
[7]   Ulam-Hyers and generalized Ulam-Hyers stability of fractional functional integro-differential equations [J].
Dilna, Natalia ;
Langerova, Martina .
IFAC PAPERSONLINE, 2024, 58 (12) :280-285
[8]   Precise Conditions on the Unique Solvability of the Linear Fractional Functional Differential Equations Related to the σ-Nonpositive Operators [J].
Dilna, Natalia .
FRACTAL AND FRACTIONAL, 2023, 7 (10)
[9]   Exact Solvability Conditions for the Non-Local Initial Value Problem for Systems of Linear Fractional Functional Differential Equations [J].
Dilna, Natalia ;
Feckan, Michal .
MATHEMATICS, 2022, 10 (10)
[10]   D-Stability of the Initial Value Problem for Symmetric Nonlinear Functional Differential Equations [J].
Dilna, Natalia ;
Feckan, Michal ;
Solovyov, Mykola .
SYMMETRY-BASEL, 2020, 12 (11) :1-19