CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation

被引:0
|
作者
Li, Yaoyiran [1 ,2 ]
Zhai, Xiang [2 ]
Alzantot, Moustafa [2 ]
Yu, Keyi [2 ]
Vulic, Ivan [1 ]
Korhonen, Anna [1 ]
Hammad, Mohamed [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Google, Mountain View, CA 94043 USA
来源
PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024 | 2024年
关键词
Sequential Recommendation; Large Language Models; Contrastive Learning;
D O I
10.1145/3640457.3688121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional recommender systems such as matrix factorization methods have primarily focused on learning a shared dense embedding space to represent both items and user preferences. Subsequently, sequence models such as RNN, GRUs, and, recently, Transformers have emerged and excelled in the task of sequential recommendation. This task requires understanding the sequential structure present in users' historical interactions to predict the next item they may like. Building upon the success of Large Language Models (LLMs) in a variety of tasks, researchers have recently explored using LLMs that are pretrained on vast corpora of text for sequential recommendation. To use LLMs for sequential recommendation, both the history of user interactions and the model's prediction of the next item are expressed in text form. We propose CALRec, a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss: the LLM is first finetuned on a data mixture from multiple domains followed by another round of target domain finetuning. Our model significantly outperforms many state-of-the-art baselines (+37% in Recall@1 and +24% in NDCG@10) and our systematic ablation studies reveal that (i) both stages of finetuning are crucial, and, when combined, we achieve improved performance, and (ii) contrastive alignment is effective among the target domains explored in our experiments.
引用
收藏
页码:422 / 432
页数:11
相关论文
共 50 条
  • [21] HICL: Hierarchical Intent Contrastive Learning for sequential recommendation
    Kang, Yan
    Yuan, Yancong
    Pu, Bin
    Yang, Yun
    Zhao, Lei
    Guo, Jing
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 251
  • [22] Temporal Contrastive Pre-Training for Sequential Recommendation
    Tian, Changxin
    Lin, Zihan
    Bian, Shuqing
    Wang, Jinpeng
    Zhao, Wayne Xin
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 1925 - 1934
  • [23] Multi-intent Driven Contrastive Sequential Recommendation
    Zheng, Yiyuan
    Li, Beibei
    Jin, Beihong
    Zhao, Rui
    Lai, Weijiang
    Xiang, Tao
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES-APPLIED DATA SCIENCE TRACK, PT IX, ECML PKDD 2024, 2024, 14949 : 141 - 156
  • [24] Learnable Model Augmentation Contrastive Learning for Sequential Recommendation
    Hao, Yongjing
    Zhao, Pengpeng
    Xian, Xuefeng
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    Zhou, Xiaofang
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2024, 36 (08) : 3963 - 3976
  • [25] Ensemble Modeling with Contrastive Knowledge Distillation for Sequential Recommendation
    Du, Hanwen
    Yuan, Huanhuan
    Zhao, Pengpeng
    Zhuang, Fuzhen
    Liu, Guanfeng
    Zhao, Lei
    Liu, Yanchi
    Sheng, Victor S.
    PROCEEDINGS OF THE 46TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL, SIGIR 2023, 2023, : 58 - 67
  • [26] Sequential recommendation based on multipair contrastive learning with informative augmentation
    Yin, Pei
    Zhao, Jun
    Ma, Zi-jie
    Tan, Xiao
    NEURAL COMPUTING & APPLICATIONS, 2023, 36 (17): : 9707 - 9721
  • [27] Periodicity May Be Emanative: Hierarchical Contrastive Learning for Sequential Recommendation
    Tian, Changxin
    Hu, Binbin
    Zhao, Wayne Xin
    Zhang, Zhiqiang
    Zhou, Jun
    PROCEEDINGS OF THE 32ND ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2023, 2023, : 2442 - 2451
  • [28] Multi-intent Aware Contrastive Learning for Sequential Recommendation
    Huang, Junshu
    Long, Zi
    Fu, Xianghua
    Chen, Yin
    ARTIFICIAL NEURAL NETWORKS AND MACHINE LEARNING-ICANN 2024, PT IX, 2024, 15024 : 89 - 104
  • [29] Item Attribute-Aware Contrastive Learning for Sequential Recommendation
    Yan, Bing
    Wang, Huaxing
    Ouyang, Zijie
    Chen, Chao
    Xia, Yang
    IEEE ACCESS, 2023, 11 (70795-70804): : 70795 - 70804
  • [30] Multi-level Contrastive Learning Framework for Sequential Recommendation
    Wang, Ziyang
    Liu, Huoyu
    Wei, Wei
    Hu, Yue
    Mao, Xian-Ling
    He, Shaojian
    Fang, Rui
    Chen, Dangyang
    PROCEEDINGS OF THE 31ST ACM INTERNATIONAL CONFERENCE ON INFORMATION AND KNOWLEDGE MANAGEMENT, CIKM 2022, 2022, : 2098 - 2107