CALRec: Contrastive Alignment of Generative LLMs for Sequential Recommendation

被引:0
|
作者
Li, Yaoyiran [1 ,2 ]
Zhai, Xiang [2 ]
Alzantot, Moustafa [2 ]
Yu, Keyi [2 ]
Vulic, Ivan [1 ]
Korhonen, Anna [1 ]
Hammad, Mohamed [2 ]
机构
[1] Univ Cambridge, Cambridge, England
[2] Google, Mountain View, CA 94043 USA
来源
PROCEEDINGS OF THE EIGHTEENTH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2024 | 2024年
关键词
Sequential Recommendation; Large Language Models; Contrastive Learning;
D O I
10.1145/3640457.3688121
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Traditional recommender systems such as matrix factorization methods have primarily focused on learning a shared dense embedding space to represent both items and user preferences. Subsequently, sequence models such as RNN, GRUs, and, recently, Transformers have emerged and excelled in the task of sequential recommendation. This task requires understanding the sequential structure present in users' historical interactions to predict the next item they may like. Building upon the success of Large Language Models (LLMs) in a variety of tasks, researchers have recently explored using LLMs that are pretrained on vast corpora of text for sequential recommendation. To use LLMs for sequential recommendation, both the history of user interactions and the model's prediction of the next item are expressed in text form. We propose CALRec, a two-stage LLM finetuning framework that finetunes a pretrained LLM in a two-tower fashion using a mixture of two contrastive losses and a language modeling loss: the LLM is first finetuned on a data mixture from multiple domains followed by another round of target domain finetuning. Our model significantly outperforms many state-of-the-art baselines (+37% in Recall@1 and +24% in NDCG@10) and our systematic ablation studies reveal that (i) both stages of finetuning are crucial, and, when combined, we achieve improved performance, and (ii) contrastive alignment is effective among the target domains explored in our experiments.
引用
收藏
页码:422 / 432
页数:11
相关论文
共 50 条
  • [1] Contrastive Generator Generative Adversarial Networks for Sequential Recommendation
    Li, Jianhong
    WEB AND BIG DATA, APWEB-WAIM 2024, PT II, 2024, 14962 : 50 - 64
  • [2] Enhancing sequential recommendation with contrastive Generative Adversarial Network
    Ni, Shuang
    Zhou, Wei
    Wen, Junhao
    Hu, Linfeng
    Qiao, Shutong
    INFORMATION PROCESSING & MANAGEMENT, 2023, 60 (03)
  • [3] Generative Adversarial Networks Based on Contrastive Learning for Sequential Recommendation
    Li Jianhong
    Wang Yue
    Yan Taotao
    Sun Chengyuan
    Li Dequan
    WEB AND BIG DATA, PT II, APWEB-WAIM 2023, 2024, 14332 : 439 - 453
  • [4] Soft Contrastive Sequential Recommendation
    Zhang, Yabin
    Wang, Zhenlei
    Yu, Wenhui
    Hu, Lantao
    Jiang, Peng
    Gai, Kung
    Chen, Xu
    ACM TRANSACTIONS ON INFORMATION SYSTEMS, 2024, 42 (06)
  • [5] Bidirectional alignment text-embeddings with decoupled contrastive for sequential recommendation
    Tong, Piao
    Liu, Qiao
    Zhang, Zhipeng
    Wang, Yuke
    Lan, Tian
    KNOWLEDGE-BASED SYSTEMS, 2025, 315
  • [6] Equivariant Contrastive Learning for Sequential Recommendation
    Zhou, Peilin
    Gao, Jingqi
    Xie, Yueqi
    Ye, Qichen
    Hua, Yining
    Kim, Jaeboum
    Wang, Shoujin
    Kim, Sunghun
    PROCEEDINGS OF THE 17TH ACM CONFERENCE ON RECOMMENDER SYSTEMS, RECSYS 2023, 2023, : 129 - 140
  • [7] Intent Contrastive Learning for Sequential Recommendation
    Chen, Yongjun
    Liu, Zhiwei
    Li, Jia
    McAuley, Julian
    Xiong, Caiming
    PROCEEDINGS OF THE ACM WEB CONFERENCE 2022 (WWW'22), 2022, : 2172 - 2182
  • [8] Dual Contrastive Network for Sequential Recommendation
    Lin, Guanyu
    Gao, Chen
    Li, Yinfeng
    Zheng, Yu
    Li, Zhiheng
    Jin, Depeng
    Li, Yong
    PROCEEDINGS OF THE 45TH INTERNATIONAL ACM SIGIR CONFERENCE ON RESEARCH AND DEVELOPMENT IN INFORMATION RETRIEVAL (SIGIR '22), 2022, : 2686 - 2691
  • [9] Contrastive Learning for Sequential Recommendation
    Xie, Xu
    Sun, Fei
    Liu, Zhaoyang
    Wu, Shiwen
    Gao, Jinyang
    Zhang, Jiandong
    Ding, Bolin
    Cui, Bin
    2022 IEEE 38TH INTERNATIONAL CONFERENCE ON DATA ENGINEERING (ICDE 2022), 2022, : 1259 - 1273
  • [10] Adversarial and Contrastive Variational Autoencoder for Sequential Recommendation
    Xie, Zhe
    Liu, Chengxuan
    Zhang, Yichi
    Lu, Hongtao
    Wang, Dong
    Ding, Yue
    PROCEEDINGS OF THE WORLD WIDE WEB CONFERENCE 2021 (WWW 2021), 2021, : 449 - 459