Bergman projection induced by radial weight acting on growth spaces

被引:0
作者
Moreno, Alvaro Miguel [1 ]
Pelaez, Jose Angel [1 ]
Taskinen, Jari [2 ]
机构
[1] Univ Malaga, Dept Anal Matemat, Campus Teatinos, Malaga 29071, Spain
[2] Univ Helsinki, Dept Math & Stat, POB 68, Helsinki 00014, Finland
关键词
Bergman projection; Boundedness; Weighted sup-norm; Radial weight; Doubling weight; Exponential weight; Weighted Hardy space; Szego projection;
D O I
10.1007/s10231-024-01518-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let omega be a radial weight on the unit disc of the complex plane D and denote by omega<^>(r)=integral(1 )(r)omega(s) ds the tail integrals. A radial weight omega belongs to the class D<^> if satisfies the upper doubling condition sup(0<r<1 )omega<^>(r)/omega<^>(1+r/2) < infinity. If nu or omega belongs to D<^>, we describe the boundedness of the Bergman projection P-omega induced by omega on the growth space L-nu<^>(infinity )={f : & Vert;f & Vert;(infinity,v )= ess sup(z is an element of D)|f(z)|nu<^>(z) < infinity} in terms of neat conditions on the moments and/or the tail integrals of omega and nu. Moreover, we solve the analogous problem for P-omega from L-nu<^>(infinity) to the Bloch type space B-nu<^>(infinity )= {f analytic inD : & Vert; f & Vert;(B nu)<^>(infinity) = sup(z is an element of D)(1 - |z|)nu<^>(z)|f '(z)| < infinity}. Similar questions for exponentially decreasing radial weights will also be studied.
引用
收藏
页码:1053 / 1073
页数:21
相关论文
共 21 条
  • [1] Bergman projection induced by radial weight
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. ADVANCES IN MATHEMATICS, 2021, 391
  • [2] BERGMAN PROJECTION INDUCED BY KERNEL WITH INTEGRAL REPRESENTATION
    Angel Pelaez, Jose
    Rattya, Jouni
    Wick, Brett D.
    [J]. JOURNAL D ANALYSE MATHEMATIQUE, 2019, 138 (01): : 325 - 360
  • [3] Two weight inequality for Bergman projection
    Angel Pelaez, Jose
    Rattya, Jouni
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2016, 105 (01): : 102 - 130
  • [4] Unbounded Bergman Projections on Weighted Spaces with Respect to Exponential Weights
    Bonet, Jose
    Lusky, Wolfgang
    Taskinen, Jari
    [J]. INTEGRAL EQUATIONS AND OPERATOR THEORY, 2021, 93 (06)
  • [5] Boundedness of the Bergman projection on Lp-spaces with exponential weights
    Constantin, Olivia
    Angel Peladez, Jose
    [J]. BULLETIN DES SCIENCES MATHEMATIQUES, 2015, 139 (03): : 245 - 268
  • [6] Unboundedness of the Bergman projections on LP spaces with exponential weights
    Dostanic, MR
    [J]. PROCEEDINGS OF THE EDINBURGH MATHEMATICAL SOCIETY, 2004, 47 : 111 - 117
  • [7] Duren P. L., 1970, PURE APPL MATH, V38
  • [8] On the boundedness of the differentiation operator between weighted spaces of holomorphic functions
    Harutyunyan, Anahit
    Lusky, Wolfgang
    [J]. STUDIA MATHEMATICA, 2008, 184 (03) : 233 - 247
  • [9] Bergman spaces with exponential weights
    Hu, Zhangjian
    Lv, Xiaofen
    Schuster, Alexander P.
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2019, 276 (05) : 1402 - 1429
  • [10] Lindenstrauss J., 1977, Classical Banach Spaces. I. Sequence Spaces