Fluidic FitzHugh-Nagumo oscillator

被引:0
|
作者
Fromm, Matthias [1 ]
Grundmann, Sven [1 ]
Seifert, Avraham [2 ]
机构
[1] Univ Rostock, Inst Fluid Dynam, Albert Einstein Str 2, D-18059 Rostock, Germany
[2] Tel Aviv Univ, Fac Engn, Sch Mech Engn, Meadow Aerodynam Lab, IL-69978 Tel Aviv, Israel
关键词
D O I
10.1063/5.0250615
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Fluidic oscillators display a unique feature: from a constant input flow, they generate an output that alternates both temporally and spatially, all without the necessity for any moving components. However, there have been varying theories proposed to explain the underlying mechanisms. In this study, we provide experimental arguments that the functioning of a single-feedback loop fluidic oscillator can be effectively modeled and interpreted using the Fitzhugh-Nagumo equations. We explore the connection between the Fitzhugh-Nagumo system and the momentum equations, as well as a fluid capacitance. Our findings reveal a complex interplay of secondary flows within the oscillator, which appears to facilitate the self-sustained oscillation.
引用
收藏
页数:8
相关论文
共 50 条
  • [1] The modified FitzHugh-Nagumo system as an oscillator
    Rabinovitch, A.
    Friedman, M.
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2009, 32 (03) : 371 - 378
  • [2] Noise-induced extreme events in single Fitzhugh-Nagumo oscillator
    Hariharan, S.
    Suresh, R.
    Chandrasekar, V. K.
    CHAOS SOLITONS & FRACTALS, 2025, 192
  • [3] Viscoelastic Fitzhugh-Nagumo models
    Bini, D
    Cherubini, C
    Filippi, S
    PHYSICAL REVIEW E, 2005, 72 (04):
  • [4] A generalized Fitzhugh-Nagumo equation
    Browne, P.
    Momoniat, E.
    Mahomed, F. M.
    NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2008, 68 (04) : 1006 - 1015
  • [5] Criticality in FitzHugh-Nagumo oscillator ensembles: Design, robustness, and spatial invariance
    Al Beattie, Bakr
    Feketa, Petro
    Ochs, Karlheinz
    Kohlstedt, Hermann
    COMMUNICATIONS PHYSICS, 2024, 7 (01)
  • [6] Criticality in FitzHugh-Nagumo oscillator ensembles: Design, robustness, and spatial invariance
    Bakr Al Beattie
    Petro Feketa
    Karlheinz Ochs
    Hermann Kohlstedt
    Communications Physics, 7
  • [7] Types of bifurcations of FitzHugh-Nagumo maps
    Duarte, J
    Silva, L
    Ramos, JS
    NONLINEAR DYNAMICS, 2006, 44 (1-4) : 231 - 242
  • [8] Phase propagations in a coupled oscillator-excitor system of FitzHugh-Nagumo models
    Zhou Lu-Qun
    Ouyang Qi
    CHINESE PHYSICS LETTERS, 2006, 23 (07) : 1709 - 1712
  • [9] FITZHUGH-NAGUMO EQUATIONS ARE A GRADIENT SYSTEM
    MORNEV, OA
    PANFILOV, AV
    ALIEV, RR
    BIOFIZIKA, 1992, 37 (01): : 123 - 125
  • [10] Spike transitions in the FitzHugh-Nagumo model
    Biscari, P.
    Lelli, C.
    EUROPEAN PHYSICAL JOURNAL PLUS, 2011, 126 (02): : 1 - 9