Success-History Based Parameter Adaptation in MOEA/D Algorithm

被引:4
|
作者
Akhmedova, Shakhnaz [1 ]
Stanovov, Vladimir [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarskiy Rabochiy Av 31, Krasnoyarsk 660037, Russia
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2020 | 2020年 / 12145卷
关键词
Multi-objective optimization; Differential evolution; Parameter adaptation; Self-adaptation; MOEA/D;
D O I
10.1007/978-3-030-53956-6_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper two parameter self-adaptation schemes are proposed for the MOEA/D-DE algorithm. These schemes use the fitness improvement ration to change four parameter values for every individual separately, as long as in the MOEA/D framework every individual solves its own scalar optimization problem. The first proposed scheme samples new values and replaces old values with new ones if there is an improvement, while the second one keeps a set of memory cells and updates the parameter values using the weighted sum. The proposed methods are testes on two sets of benchmark problems, namely MOEADDE functions and WFG functions, IGD and HV metrics are calculated. The results comparison is performed with statistical tests. The comparison shows that the proposed parameter adaptation schemes are capable of delivering significant improvements to the performance of the MOEA/D-DE algorithm. Also, it is shown that parameter tuning is better than random sampling of parameter values. The proposed parameter self-adaptation techniques could be used for other multi-objective algorithms, which use MOEA/D framework.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [21] Large-Scale Weapon Target Assignment Based on Improved MOEA/D Algorithm
    Yu, Huiyang
    Xu, Tao
    Wang, Xiaoguang
    Yi, Xiaojian
    Chen, Junnan
    2022 4TH INTERNATIONAL CONFERENCE ON SYSTEM RELIABILITY AND SAFETY ENGINEERING, SRSE, 2022, : 86 - 91
  • [22] Multi-objective test case prioritization based on an improved MOEA/D algorithm
    Chen, Xin
    Luo, Dengfa
    Yu, Dongjin
    Fang, Zhaohao
    EXPERT SYSTEMS WITH APPLICATIONS, 2025, 266
  • [23] Research on Partition Parameter Design Method for Integrated Modular Avionics Based on MOEA/D-ADV
    Chen, Huakun
    Zhang, Weiguo
    Lyu, Yongxi
    IEEE ACCESS, 2020, 8 (08): : 117278 - 117297
  • [24] A Replica Management Strategy Based On MOEA/D
    Yang, Wanhao
    Hu, Yan
    PROCEEDINGS OF THE 2018 13TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA 2018), 2018, : 2154 - 2159
  • [25] A combination weight method based on MOEA/D
    Cheng J.-H.
    Dong M.-T.
    Zhao L.
    Kongzhi yu Juece/Control and Decision, 2021, 36 (12): : 3056 - 3062
  • [26] Parallel genetic algorithm with parameter adaptation
    Tongchim, S
    Chongstitvatana, P
    INFORMATION PROCESSING LETTERS, 2002, 82 (01) : 47 - 54
  • [27] Fault parameter estimation of analog circuits using the decomposed multi-objective evolutionary algorithm MOEA / D based on logarithmic distribution reference points LDRP
    Yang C.
    Zhang Q.
    Wang H.
    Yi Qi Yi Biao Xue Bao/Chinese Journal of Scientific Instrument, 2023, 44 (02): : 119 - 128
  • [28] Opposition-based Magnetic Optimization Algorithm with parameter adaptation strategy
    Aziz, Mahdi
    Tayarani-N, Mohammad-H.
    SWARM AND EVOLUTIONARY COMPUTATION, 2016, 26 : 97 - 119
  • [29] Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model
    Dong, Jian
    Li, Qianqian
    Deng, Lianwen
    AEU-INTERNATIONAL JOURNAL OF ELECTRONICS AND COMMUNICATIONS, 2017, 72 : 192 - 199
  • [30] MOEA/D Using Covariance Matrix Adaptation Evolution Strategy for Complex Multi-Objective Optimization Problems
    Wang, Ting-Chen
    Liaw, Rung-Tzuo
    Ting, Chuan-Kang
    2016 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2016, : 983 - 990