Success-History Based Parameter Adaptation in MOEA/D Algorithm

被引:4
作者
Akhmedova, Shakhnaz [1 ]
Stanovov, Vladimir [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarskiy Rabochiy Av 31, Krasnoyarsk 660037, Russia
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2020 | 2020年 / 12145卷
关键词
Multi-objective optimization; Differential evolution; Parameter adaptation; Self-adaptation; MOEA/D;
D O I
10.1007/978-3-030-53956-6_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper two parameter self-adaptation schemes are proposed for the MOEA/D-DE algorithm. These schemes use the fitness improvement ration to change four parameter values for every individual separately, as long as in the MOEA/D framework every individual solves its own scalar optimization problem. The first proposed scheme samples new values and replaces old values with new ones if there is an improvement, while the second one keeps a set of memory cells and updates the parameter values using the weighted sum. The proposed methods are testes on two sets of benchmark problems, namely MOEADDE functions and WFG functions, IGD and HV metrics are calculated. The results comparison is performed with statistical tests. The comparison shows that the proposed parameter adaptation schemes are capable of delivering significant improvements to the performance of the MOEA/D-DE algorithm. Also, it is shown that parameter tuning is better than random sampling of parameter values. The proposed parameter self-adaptation techniques could be used for other multi-objective algorithms, which use MOEA/D framework.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 16 条
[1]   Self-adapting control parameters in differential evolution: A comparative study on numerical benchmark problems [J].
Brest, Janez ;
Greiner, Saso ;
Boskovic, Borko ;
Mernik, Marjan ;
Zumer, Vijern .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (06) :646-657
[2]   Recent advances in differential evolution - An updated survey [J].
Das, Swagatam ;
Mullick, Sankha Subhra ;
Suganthan, P. N. .
SWARM AND EVOLUTIONARY COMPUTATION, 2016, 27 :1-30
[3]  
Deb Kalyanmoy, 2014, International Journal of Artificial Intelligence and Soft Computing, V4, P1, DOI 10.1504/IJAISC.2014.059280
[4]   A fast and elitist multiobjective genetic algorithm: NSGA-II [J].
Deb, K ;
Pratap, A ;
Agarwal, S ;
Meyarivan, T .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2002, 6 (02) :182-197
[5]  
Deb K., 1995, Complex Systems, V9, P115
[6]   Parameter control in evolutionary algorithms [J].
Eiben, AE ;
Hinterding, R ;
Michalewicz, Z .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 1999, 3 (02) :124-141
[7]   Multi-objective optimization based on self-adaptive differential evolution algorithm [J].
Huang, V. L. ;
Qin, A. K. ;
Suganthan, P. N. ;
Tasgetiren, M. F. .
2007 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION, VOLS 1-10, PROCEEDINGS, 2007, :3601-+
[8]   A review of multiobjective test problems and a scalable test problem toolkit [J].
Huband, Simon ;
Hingston, Phil ;
Barone, Luigi ;
While, Lyndon .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2006, 10 (05) :477-506
[9]   Multiobjective Optimization Problems With Complicated Pareto Sets, MOEA/D and NSGA-II [J].
Li, Hui ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2009, 13 (02) :284-302
[10]   Adaptive Operator Selection With Bandits for a Multiobjective Evolutionary Algorithm Based on Decomposition [J].
Li, Ke ;
Fialho, Alvaro ;
Kwong, Sam ;
Zhang, Qingfu .
IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2014, 18 (01) :114-130