Success-History Based Parameter Adaptation in MOEA/D Algorithm

被引:4
|
作者
Akhmedova, Shakhnaz [1 ]
Stanovov, Vladimir [1 ]
机构
[1] Reshetnev Siberian State Univ Sci & Technol, Krasnoyarskiy Rabochiy Av 31, Krasnoyarsk 660037, Russia
来源
ADVANCES IN SWARM INTELLIGENCE, ICSI 2020 | 2020年 / 12145卷
关键词
Multi-objective optimization; Differential evolution; Parameter adaptation; Self-adaptation; MOEA/D;
D O I
10.1007/978-3-030-53956-6_41
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper two parameter self-adaptation schemes are proposed for the MOEA/D-DE algorithm. These schemes use the fitness improvement ration to change four parameter values for every individual separately, as long as in the MOEA/D framework every individual solves its own scalar optimization problem. The first proposed scheme samples new values and replaces old values with new ones if there is an improvement, while the second one keeps a set of memory cells and updates the parameter values using the weighted sum. The proposed methods are testes on two sets of benchmark problems, namely MOEADDE functions and WFG functions, IGD and HV metrics are calculated. The results comparison is performed with statistical tests. The comparison shows that the proposed parameter adaptation schemes are capable of delivering significant improvements to the performance of the MOEA/D-DE algorithm. Also, it is shown that parameter tuning is better than random sampling of parameter values. The proposed parameter self-adaptation techniques could be used for other multi-objective algorithms, which use MOEA/D framework.
引用
收藏
页码:455 / 462
页数:8
相关论文
共 50 条
  • [1] Distance based parameter adaptation for Success-History based Differential Evolution
    Viktorin, Adam
    Senkerik, Roman
    Pluhacek, Michal
    Kadavy, Tomas
    Zamuda, Ales
    SWARM AND EVOLUTIONARY COMPUTATION, 2019, 50
  • [2] Offline Automatic Parameter Tuning of MOEA/D Using Genetic Algorithm
    Pang, Lie Meng
    Ishibuchi, Hisao
    Shang, Ke
    2019 IEEE SYMPOSIUM SERIES ON COMPUTATIONAL INTELLIGENCE (IEEE SSCI 2019), 2019, : 1889 - 1897
  • [3] Using spatial neighborhoods for parameter adaptation: An improved success history based differential evolution
    Ghosh, Arka
    Das, Swagatam
    Das, Asit Kr
    Senkerik, Roman
    Viktorin, Adam
    Zelinka, Ivan
    Masegosa, Antonio David
    SWARM AND EVOLUTIONARY COMPUTATION, 2022, 71
  • [4] A memetic algorithm based on MOEA/D for the examination timetabling problem
    Lei, Yu
    Shi, Jiao
    Yan, Zhen
    SOFT COMPUTING, 2018, 22 (05) : 1511 - 1523
  • [5] A memetic algorithm based on MOEA/D for the examination timetabling problem
    Yu Lei
    Jiao Shi
    Zhen Yan
    Soft Computing, 2018, 22 : 1511 - 1523
  • [6] An improved MOEA/D algorithm with an adaptive evolutionary strategy
    Wang, Wen-xiang
    Li, Kang-shun
    Tao, Xing-zhen
    Gu, Fa-hui
    INFORMATION SCIENCES, 2020, 539 : 1 - 15
  • [7] A hybrid algorithm based on MOEA/D and local search for multiobjective optimization
    Leung, Man-Fai
    Ng, Sin-Chun
    2020 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC), 2020,
  • [8] MOEA/D: A multiobjective evolutionary algorithm based on decomposition
    Zhang, Qingfu
    Li, Hui
    IEEE TRANSACTIONS ON EVOLUTIONARY COMPUTATION, 2007, 11 (06) : 712 - 731
  • [9] Multi-chaotic System Induced Success-History Based Adaptive Differential Evolution
    Viktorin, Adam
    Pluhacek, Michal
    Senkerik, Roman
    ARTIFICIAL INTELLIGENCE AND SOFT COMPUTING, ICAISC 2016, 2016, 9692 : 517 - 527
  • [10] MOEA/D-SQA: a multi-objective memetic algorithm based on decomposition
    Tan, Yan-Yan
    Jiao, Yong-Chang
    Li, Hong
    Wang, Xin-Kuan
    ENGINEERING OPTIMIZATION, 2012, 44 (09) : 1095 - 1115