On a planar equation involving (2, q)-Laplacian with zero mass and Trudinger-Moser nonlinearity

被引:0
作者
Cardoso, J. A. [1 ]
de Albuquerque, J. C. [2 ]
Carvalho, J. [3 ]
Figueiredo, G. M. [4 ]
机构
[1] Univ Fed Sergipe, Dept Math, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[3] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[4] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Zero mass case; Weighted Sobolev embedding; Trudinger-Moser inequality; LINEAR ELLIPTIC-EQUATIONS; EXPONENTIAL-GROWTH; POSITIVE SOLUTIONS; WEAK SOLUTIONS; REGULARITY; EXISTENCE; INEQUALITY;
D O I
10.1016/j.nonrwa.2024.104227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study existence of positive solutions to a class of (2, q)-equations in the zero mass case in R-2. We establish a weighted Sobolev embedding and we introduce a new Trudinger-Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.
引用
收藏
页数:17
相关论文
共 37 条
  • [31] Weighted Sobolev embedding with unbounded and decaying radial potentials
    Su, Jiabao
    Wang, Zhi-Qiang
    Willem, Michel
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 238 (01) : 201 - 219
  • [32] TRUDINGER NS, 1967, J MATH MECH, V17, P473
  • [33] Wang L., 2023, Electron. J. Qual. Theory Differ. Equ., P32
  • [34] Willem M, 1996, Minimax Theorems, DOI DOI 10.1007/978-1-4612-4146-1
  • [35] Existence of solutions for the (p, q)-Laplacian equation with nonlocal Choquard reaction
    Xie, Xiaoliang
    Wang, Tianfang
    Zhang, Wen
    [J]. APPLIED MATHEMATICS LETTERS, 2023, 135
  • [36] Existence of positive solutions to quasi-linear elliptic equations with exponential growth in the whole Euclidean space
    Yang, Yunyan
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2012, 262 (04) : 1679 - 1704
  • [37] YUDOVICH VI, 1961, DOKL AKAD NAUK SSSR+, V138, P805