On a planar equation involving (2, q)-Laplacian with zero mass and Trudinger-Moser nonlinearity

被引:0
作者
Cardoso, J. A. [1 ]
de Albuquerque, J. C. [2 ]
Carvalho, J. [3 ]
Figueiredo, G. M. [4 ]
机构
[1] Univ Fed Sergipe, Dept Math, BR-49100000 Sao Cristovao, SE, Brazil
[2] Univ Fed Pernambuco, Dept Matemat, BR-50670901 Recife, PE, Brazil
[3] Univ Fed Sergipe, Dept Matemat, BR-49100000 Sao Cristovao, SE, Brazil
[4] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
关键词
Zero mass case; Weighted Sobolev embedding; Trudinger-Moser inequality; LINEAR ELLIPTIC-EQUATIONS; EXPONENTIAL-GROWTH; POSITIVE SOLUTIONS; WEAK SOLUTIONS; REGULARITY; EXISTENCE; INEQUALITY;
D O I
10.1016/j.nonrwa.2024.104227
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we study existence of positive solutions to a class of (2, q)-equations in the zero mass case in R-2. We establish a weighted Sobolev embedding and we introduce a new Trudinger-Moser type inequality. Moreover, since we work on a suitable radial Sobolev space, we prove an appropriate version of the well-known Symmetric Criticality Principle by Palais. Finally, we study regularity of solutions applying Moser iteration scheme.
引用
收藏
页数:17
相关论文
共 37 条
  • [1] On a planar non-autonomous Schrodinger-Poisson system involving exponential critical growth
    Albuquerque, F. S.
    Carvalho, J. L.
    Figueiredo, G. M.
    Medeiros, E.
    [J]. CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2021, 60 (01)
  • [2] Albuquerque FSB, 2021, MILAN J MATH, V89, P263, DOI 10.1007/s00032-021-00334-x
  • [3] Nonlinear Schrodinger equation with unbounded or decaying radial potentials involving exponential critical growth in R2
    Albuquerque, Francisco S. B.
    Alves, Claudianor O.
    Medeiros, Everaldo S.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 409 (02) : 1021 - 1031
  • [4] ALVES M.J., 2015, Ill. J. Math, V59, P545
  • [5] Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
  • [6] The nonlinear (p, q)-Schrodinger equation with a general nonlinearity: Existence and concentration
    Ambrosio, Vincenzo
    [J]. JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2023, 178 : 141 - 184
  • [7] Baldelli L, 2022, J GEOM ANAL, V32, DOI 10.1007/s12220-021-00846-3
  • [8] Baldelli L, 2021, CALC VAR PARTIAL DIF, V60, DOI 10.1007/s00526-020-01867-6
  • [9] Boer E.D.S., 2021, arXiv
  • [10] On the Regularity of the Minimizer of the Electrostatic Born-Infeld Energy
    Bonheure, Denis
    Iacopetti, Alessandro
    [J]. ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2019, 232 (02) : 697 - 725