Combining CRISPR-Cas12a with Microsphere Array-Enhanced Fluorescence for Portable Pathogen Nucleic Acid Detection

被引:0
|
作者
Gao, Menglu [1 ]
Yang, Chen [2 ,3 ]
Si, Wu [1 ]
Xi, Xiaodan [1 ]
Chen, Liangjun [1 ]
Zeng, Zhikun [1 ]
Rong, Yuan [1 ]
Yang, Yi [2 ,3 ]
Wang, Fubing [1 ]
Yuan, Chunhui [4 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Ctr Single Cell Om & Tumor Liquid Biopsy, Dept Lab Med, Wuhan 430071, Peoples R China
[2] Wuhan Univ, Renmin Hosp, Inst Med & Phys, Sch Phys & Technol,Dept Clin Lab, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Childrens Hosp, Wuhan Maternal & Child Healthcare Hosp, Tongji Med Coll,Dept Lab Med, Wuhan 430015, Peoples R China
基金
中国国家自然科学基金;
关键词
nucleic acid detection; microspheres; fluorescenceenhancement; CRISPR; pathogen detection; AMPLIFICATION; SYSTEM;
D O I
10.1021/acsami.5c00655
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The detection of food contamination in a swift and sensitive manner is essential for safeguarding public health. Clustered regularly interspaced short palindromic repeats (CRISPR)-based assays for nucleic acid detection are renowned for their high specificity and convenient, related studies have focused on refining the Cas protein and optimizing the CRISPR (cr)RNAs design within CRISPR-based assays for enhancing the sensitivity of nucleic acid detection. Our research offers innovative insights into enhancing the fluorescence signal output intensity from a physical standpoint, thereby presenting a practical and cost-effective strategy to lower the detection thresholds in CRISPR-based assays. By a layer of microsphere arrays was spread onto the bottom of the microfluidic chip to enhance the fluorescence signal of the sample via self-assembly of the microspheres. Recombinase polymerase amplification (RPA) was used to amplify target sequences, followed by crRNA binding to activate Cas enzyme, cleaving fluorescein amidite (FAM)-labeled reporters and emitting a fluorescent signal. The method successfully identified SARS-CoV-2 positive samples (10 clinical samples and 8 environmental contamination samples) and distinguished them from negative samples. Meanwhile, it successfully detected 4 food contamination Shigella samples and 5 clinical Shigella samples. In this study, the developed method exhibited a detection limit (LoD) of 75 fM for SARS-CoV-2 (POCT with USB camera: 50 fM) and 100 fM for Shigella (POCT with USB camera: 75 fM). It also demonstrated promising sensitivity (100%) and specificity (100%) in a small-sample validation. Combined portable and automated detection was achieved using a smartphone to receive and process the fluorescent signals obtained from the samples. The detection platform developed in this study is not only applicable for the detection of pathogens in cold-chain food products, but also extends to pathogen detection in community hospitals and resource-limited areas, providing an efficient solution for rapid pathogen screening in different settings. Moreover, different nucleic acid samples can be detected by changing the RPA primer and CRISPR crRNA. This method provides a paradigm for studying enhanced fluorescence signaling and holds significant potential to advance the commercialization and practical use of CRISPR fluorescence sensors.
引用
收藏
页码:20932 / 20942
页数:11
相关论文
共 50 条
  • [31] Sensitive and simultaneous detection of hygiene indicator bacteria using an enhanced CRISPR/Cas system in combination with a portable fluorescence detector
    Shin, Jiye
    Yoon, Taehwi
    Park, Junghun
    Park, Ki Soo
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 365
  • [32] Conditionally Activated Cross-Linked crRNAs for CRISPR/Cas12a Based Nucleic Acid Detection
    Chen, Wei
    Liu, Li
    Cheng, Liang
    ACS SYNTHETIC BIOLOGY, 2024, 14 (01): : 94 - 100
  • [33] Rapid Nucleic Acid Detection of Listeria monocytogenes Based on RAA-CRISPR Cas12a System
    Yang, Yujuan
    Kong, Xiangxiang
    Yang, Jielin
    Xue, Junxin
    Niu, Bing
    Chen, Qin
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (06)
  • [34] A rapid and inexpensive nucleic acid detection platform for Listeria monocytogenes based on the CRISPR/Cas12a system
    Xiao, Yiran
    Ren, Honglin
    Wang, Han
    Zou, Deying
    Liu, Yixin
    Li, Haosong
    Hu, Pan
    Li, Yansong
    Liu, Zengshan
    Lu, Shiying
    TALANTA, 2023, 259
  • [35] Carrying out pseudo dual nucleic acid detection from sample to visual result in a polypropylene bag with CRISPR/Cas12a
    Wu, Hui
    Chen, Yanju
    Shi, Ya
    Wang, Liu
    Zhang, Mengyao
    Wu, Jian
    Chen, Huan
    BIOSENSORS & BIOELECTRONICS, 2021, 178
  • [36] Enhanced chemiluminescence imaging sensor for ultrasensitive detection of nucleic acids based on HCR-CRISPR/Cas12a
    Ke, Xinxin
    Ou, Yangjing
    Lin, Yu
    Hu, Tao
    BIOSENSORS & BIOELECTRONICS, 2022, 212
  • [37] CRISPR/Cas12a based fluorescence-enhanced lateral flow biosensor for detection of Staphylococcus aureus
    Zhou, Baoqing
    Ye, Qinghua
    Li, Fan
    Xiang, Xinran
    Shang, Yuting
    Wang, Chufang
    Shao, Yanna
    Xue, Liang
    Zhang, Jumei
    Wang, Juan
    Ding, Yu
    Chen, Moutong
    Wu, Qingping
    SENSORS AND ACTUATORS B-CHEMICAL, 2022, 351
  • [38] Platinum nanoparticles (PtNPs)-based CRISPR/Cas12a platform for detection of nucleic acid and protein in clinical samples
    Liang, Jiajie
    Teng, Peijun
    Hu, Liangshan
    He, Guanbo
    Song, Qifang
    Zhang, Ying
    Peng, Bin
    Li, Gan
    Xiao, Wei
    Cao, Donglin
    Tang, Yong
    ANALYTICA CHIMICA ACTA, 2022, 1225
  • [39] Non-canonical CRISPR/Cas12a-based technology: A novel horizon for biosensing in nucleic acid detection
    Lei, Xueying
    Cao, Shengnan
    Liu, Tao
    Wu, Yongjun
    Yu, Songcheng
    TALANTA, 2024, 271
  • [40] RPA/CRISPR/Cas12a-Based On-Site and Rapid Nucleic Acid Detection of Toxoplasma gondii in the Environment
    Lei, Rong
    Li, Limei
    Wu, Pinshan
    Fei, Xinyu
    Zhang, Yuting
    Wang, Jingyi
    Zhang, Di
    Zhang, Qingfang
    Yang, Na
    Wang, Xinyi
    ACS SYNTHETIC BIOLOGY, 2022, 11 (05): : 1772 - 1781