Combining CRISPR-Cas12a with Microsphere Array-Enhanced Fluorescence for Portable Pathogen Nucleic Acid Detection

被引:0
|
作者
Gao, Menglu [1 ]
Yang, Chen [2 ,3 ]
Si, Wu [1 ]
Xi, Xiaodan [1 ]
Chen, Liangjun [1 ]
Zeng, Zhikun [1 ]
Rong, Yuan [1 ]
Yang, Yi [2 ,3 ]
Wang, Fubing [1 ]
Yuan, Chunhui [4 ]
机构
[1] Wuhan Univ, Zhongnan Hosp, Ctr Single Cell Om & Tumor Liquid Biopsy, Dept Lab Med, Wuhan 430071, Peoples R China
[2] Wuhan Univ, Renmin Hosp, Inst Med & Phys, Sch Phys & Technol,Dept Clin Lab, Wuhan 430072, Peoples R China
[3] Wuhan Univ, Shenzhen Res Inst, Shenzhen 518000, Peoples R China
[4] Huazhong Univ Sci & Technol, Wuhan Childrens Hosp, Wuhan Maternal & Child Healthcare Hosp, Tongji Med Coll,Dept Lab Med, Wuhan 430015, Peoples R China
基金
中国国家自然科学基金;
关键词
nucleic acid detection; microspheres; fluorescenceenhancement; CRISPR; pathogen detection; AMPLIFICATION; SYSTEM;
D O I
10.1021/acsami.5c00655
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
The detection of food contamination in a swift and sensitive manner is essential for safeguarding public health. Clustered regularly interspaced short palindromic repeats (CRISPR)-based assays for nucleic acid detection are renowned for their high specificity and convenient, related studies have focused on refining the Cas protein and optimizing the CRISPR (cr)RNAs design within CRISPR-based assays for enhancing the sensitivity of nucleic acid detection. Our research offers innovative insights into enhancing the fluorescence signal output intensity from a physical standpoint, thereby presenting a practical and cost-effective strategy to lower the detection thresholds in CRISPR-based assays. By a layer of microsphere arrays was spread onto the bottom of the microfluidic chip to enhance the fluorescence signal of the sample via self-assembly of the microspheres. Recombinase polymerase amplification (RPA) was used to amplify target sequences, followed by crRNA binding to activate Cas enzyme, cleaving fluorescein amidite (FAM)-labeled reporters and emitting a fluorescent signal. The method successfully identified SARS-CoV-2 positive samples (10 clinical samples and 8 environmental contamination samples) and distinguished them from negative samples. Meanwhile, it successfully detected 4 food contamination Shigella samples and 5 clinical Shigella samples. In this study, the developed method exhibited a detection limit (LoD) of 75 fM for SARS-CoV-2 (POCT with USB camera: 50 fM) and 100 fM for Shigella (POCT with USB camera: 75 fM). It also demonstrated promising sensitivity (100%) and specificity (100%) in a small-sample validation. Combined portable and automated detection was achieved using a smartphone to receive and process the fluorescent signals obtained from the samples. The detection platform developed in this study is not only applicable for the detection of pathogens in cold-chain food products, but also extends to pathogen detection in community hospitals and resource-limited areas, providing an efficient solution for rapid pathogen screening in different settings. Moreover, different nucleic acid samples can be detected by changing the RPA primer and CRISPR crRNA. This method provides a paradigm for studying enhanced fluorescence signaling and holds significant potential to advance the commercialization and practical use of CRISPR fluorescence sensors.
引用
收藏
页码:20932 / 20942
页数:11
相关论文
共 50 条
  • [21] Cas12aVDet: A CRISPR/Cas12a-Based Platform for Rapid and Visual Nucleic Acid Detection
    Wang, Bei
    Wang, Rui
    Wang, Daqi
    Wu, Jian
    Li, Jixi
    Wang, Jin
    Liu, Huihui
    Wang, Yongming
    ANALYTICAL CHEMISTRY, 2019, 91 (19) : 12156 - 12161
  • [22] Research progress on nucleic acid detection and genome editing of CRISPR/Cas12 system
    Yanhua Yang
    Dandan Wang
    Peng Lü
    Shangshang Ma
    Keping Chen
    Molecular Biology Reports, 2023, 50 : 3723 - 3738
  • [23] An electrochemiluminescent imaging strategy based on CRISPR/Cas12a for ultrasensitive detection of nucleic acid
    Luo, Sijian
    Wu, Jie
    Zhong, Min
    Sun, Jun
    Ao, Hang
    Cao, Xu
    Liu, Jinbo
    Ju, Huangxian
    ANALYTICA CHIMICA ACTA, 2024, 1324
  • [24] Exploiting the Potential of Spherical PAM Antenna for Enhanced CRISPR-Cas12a: A Paradigm Shift toward a Universal Amplification-Free Nucleic Acid Test Platform
    Dai, Jiahui
    Wu, Beibei
    Ai, Fengxiang
    Yang, Zhugen
    Lu, Yanyan
    Zinian, Cai
    Zeng, Kun
    Zhang, Zhen
    ANALYTICAL CHEMISTRY, 2025, 97 (02) : 1236 - 1245
  • [25] Optimization of CRISPR/Cas12f1 guide RNAs using AlphaFold 3 for enhanced nucleic acid detection
    Pan, Lulu
    Ma, Yongcheng
    Sang, Rui
    Lu, Xia
    Fan, Xiaxia
    Li, Ming
    Zuo, Qianfei
    Wang, Aifeng
    Deng, Fei
    MICROCHEMICAL JOURNAL, 2025, 212
  • [26] Ultrafast visual nucleic acid detection with CRISPR/Cas12a and rapid PCR in single capillary
    Wang, Rui
    Chen, Rui
    Qian, Cheng
    Pang, Yanan
    Wu, Jian
    Li, Fuyou
    SENSORS AND ACTUATORS B-CHEMICAL, 2021, 326
  • [27] Ultrasensitive detection of nucleic acid with a CRISPR/Cas12a empowered electrochemical sensor based on antimonene
    Fan, Taojian
    Zhang, Shaohui
    Meng, Changle
    Gao, Lingfeng
    Yan, Li
    Wang, Hao
    Shi, Xin
    Ge, Yanqi
    Zhang, Han
    Hu, Junqing
    FLATCHEM, 2024, 45
  • [28] CRISPR-Cas12a2-based rapid and sensitive detection system for target nucleic acid
    Yu, Helin
    Feng, Meng
    Liu, Chuncao
    Wang, Feifei
    Pan, Shaokun
    Sui, Guodong
    Jing, Wenwen
    Cheng, Xunjia
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2025, 290
  • [29] HOLMESv2: A CRISPR-Cas12b-Assisted Platform for Nucleic Acid Detection and DNA Methylation Quantitation
    Li, Linxian
    Li, Shiyuan
    Wu, Na
    Wu, Jiacheng
    Wang, Gang
    Zhao, Guoping
    Wang, Jin
    ACS SYNTHETIC BIOLOGY, 2019, 8 (10): : 2228 - 2237
  • [30] Portable rapid detection of maize chlorotic mottle virus using RT-RAA/CRISPR-Cas12a based lateral flow assay
    Lei, Rong
    Kuang, Ruirui
    Peng, Xuanzi
    Jiao, Zhiyuan
    Zhao, Zhenxing
    Cong, Haolong
    Fan, Zaifeng
    Zhang, Yongjiang
    FRONTIERS IN PLANT SCIENCE, 2023, 14