Battery Health Monitoring and Remaining Useful Life Prediction Techniques: A Review of Technologies

被引:1
|
作者
Ahwiadi, Mohamed [1 ]
Wang, Wilson [1 ]
机构
[1] Lakehead Univ, Dept Mech & Mechatron Engn, Thunder Bay, ON P7B 5E1, Canada
来源
BATTERIES-BASEL | 2025年 / 11卷 / 01期
基金
加拿大自然科学与工程研究理事会;
关键词
lithium-ion batteries; battery health management; battery degradation; state of health estimation; remaining useful life prediction; data-driven techniques; model-based methods; hybrid methods; LITHIUM-ION BATTERIES; PARTICLE FILTER TECHNIQUE; SYSTEM STATE ESTIMATION; EXTENDED KALMAN FILTER; OF-CHARGE ESTIMATION; GAUSSIAN PROCESS; ENERGY-STORAGE; PROGNOSIS; HYBRID; OPTIMIZATION;
D O I
10.3390/batteries11010031
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
Lithium-ion (Li-ion) batteries have become essential in modern industries and domestic applications due to their high energy density and efficiency. However, they experience gradual degradation over time, which presents significant challenges in maintaining optimal battery performance and increases the risk of unexpected system failures. To ensure the reliability and longevity of Li-ion batteries in applications, various methods have been proposed for battery health monitoring and remaining useful life (RUL) prediction. This paper provides a comprehensive review and analysis of the primary approaches employed for battery health monitoring and RUL estimation under the categories of model-based, data-driven, and hybrid methods. Generally speaking, model-based methods use physical or electrochemical models to simulate battery behaviour, which offers valuable insights into the principles that govern battery degradation. Data-driven techniques leverage historical data, AI, and machine learning algorithms to identify degradation trends and predict RUL, which can provide flexible and adaptive solutions. Hybrid approaches integrate multiple methods to enhance predictive accuracy by combining the physical insights of model-based methods with the statistical and analytical strengths of data-driven techniques. This paper thoroughly evaluates these methodologies, focusing on recent advancements along with their respective strengths and limitations. By consolidating current findings and highlighting potential pathways for advancement, this review paper serves as a foundational resource for researchers and practitioners working to advance battery health monitoring and RUL prediction methods across both academic and industrial fields.
引用
收藏
页数:29
相关论文
共 50 条
  • [31] Prediction of Remaining Useful Life of Lithium-ion Battery Based on UKF
    Huang, Mengtao
    Zhang, Qibo
    2020 CHINESE AUTOMATION CONGRESS (CAC 2020), 2020, : 4502 - 4506
  • [32] State of Health Estimation and Remaining Useful Life Prediction of Electric Vehicles Based on Real-World Driving and Charging Data
    Hu, Jie
    Weng, Linglong
    Gao, Zhiwen
    Yang, Bowen
    IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2023, 72 (01) : 382 - 394
  • [33] REMAINING USEFUL LIFE PREDICTION MODEL OF THE SPACE STATION
    Li, Xiaopeng
    Huang, Hong-Zhong
    Li, Fuqiu
    Ren, Liming
    EKSPLOATACJA I NIEZAWODNOSC-MAINTENANCE AND RELIABILITY, 2019, 21 (03): : 501 - 510
  • [34] A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries
    Sharma, Prabhakar
    Bora, Bhaskor J. J.
    BATTERIES-BASEL, 2023, 9 (01):
  • [35] Battery Remaining Useful Life Prediction Supported by Long Short-Term Memory Neural Network
    Marri, Iacopo
    Petkovski, Emil
    Cristaldi, Loredana
    Faifer, Marco
    2023 IEEE INTERNATIONAL INSTRUMENTATION AND MEASUREMENT TECHNOLOGY CONFERENCE, I2MTC, 2023,
  • [36] A Nonlinear Prediction Method of Lithium-Ion Battery Remaining Useful Life Considering Recovery Phenomenon
    Zhang, Zhenyu
    Peng, Zhen
    Guan, Yong
    Wu, Lifeng
    INTERNATIONAL JOURNAL OF ELECTROCHEMICAL SCIENCE, 2020, 15 (09): : 8674 - 8693
  • [37] Health indicator construction and remaining useful life prediction for aircraft engine
    Peng K.-X.
    Pi Y.-T.
    Jiao R.-H.
    Tang P.
    Kongzhi Lilun Yu Yingyong/Control Theory and Applications, 2020, 37 (04): : 713 - 720
  • [38] Remaining useful life distribution prediction framework for lithium-ion battery fused prior knowledge and monitoring data
    Wang, Mingxian
    Xiang, Gang
    Cui, Langfu
    Zhang, Qingzhen
    Chen, Juan
    MEASUREMENT SCIENCE AND TECHNOLOGY, 2023, 34 (12)
  • [39] Health index construction and remaining useful life prediction of rolling bearings
    Wang Yujing
    Wang Shida
    Kang Shouqiang
    Xie Jinbao
    PROCEEDINGS OF 2019 14TH IEEE INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS (ICEMI), 2019, : 1241 - 1247
  • [40] An Overview of Remaining Useful Life Prediction of Battery Using Deep Learning and Ensemble Learning Algorithms on Data-Dependent Models
    Sravanthi, C. L.
    Sekhar, J. N. Chandra
    Alluraiah, N. Chinna
    Dhanamjayulu, C.
    Pujari, Harish Kumar
    Khan, Baseem
    INTERNATIONAL TRANSACTIONS ON ELECTRICAL ENERGY SYSTEMS, 2025, 2025 (01):