Physics informed neural networks for learning the horizon size in bond-based peridynamic models

被引:3
作者
V. Difonzo, Fabio [1 ,2 ]
Lopez, Luciano [3 ]
Pellegrino, Sabrina F. [4 ]
机构
[1] CNR, Ist Applicazioni Calcolo Mauro Picone, Via G Amendola 122-I, I-70126 Bari, Italy
[2] LUM Univ Giuseppe Degennaro, Dept Engn, SS 100 km 18, I-70010 Casamassima, BA, Italy
[3] Univ Studi Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[4] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Via E Orabona 4, I-70125 Bari, Italy
关键词
Physics informed neural network; Bond-based peridynamic theory; Horizon; OPTIMIZATION;
D O I
10.1016/j.cma.2024.117727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper broaches the peridynamic inverse problem of determining the horizon size of the kernel function in a one-dimensional model of a linear microelastic material. We explore different kernel functions, including V-shaped, distributed, and tent kernels. The paper presents numerical experiments using PINNs to learn the horizon parameter for problems in one and two spatial dimensions. The results demonstrate the effectiveness of PINNs in solving the peridynamic inverse problem, even in the presence of challenging kernel functions. We observe and prove a one-sided convergence behavior of the Stochastic Gradient Descent method towards a global minimum of the loss function, suggesting that the true value of the horizon parameter is an unstable equilibrium point for the PINN's gradient flow dynamics.
引用
收藏
页数:18
相关论文
共 50 条
[41]   A Fast Physics-informed Neural Network Based on Extreme Learning Machine for Solving Magnetostatic Problems [J].
Sato, Takahiro ;
Sasaki, Hidenori ;
Sato, Yuki .
2023 24TH INTERNATIONAL CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS, COMPUMAG, 2023,
[42]   UNDERSTANDING AND MITIGATING GRADIENT FLOW PATHOLOGIES IN PHYSICS-INFORMED NEURAL NETWORKS [J].
Wang, Sifan ;
Teng, Yujun ;
Perdikaris, Paris .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) :A3055-A3081
[43]   Physics-informed neural networks for gravity field modeling of the Earth and Moon [J].
John Martin ;
Hanspeter Schaub .
Celestial Mechanics and Dynamical Astronomy, 2022, 134
[44]   Physics-informed neural networks for hydraulic transient analysis in pipeline systems [J].
Ye, Jiawei ;
Do, Nhu Cuong ;
Zeng, Wei ;
Lambert, Martin .
WATER RESEARCH, 2022, 221
[45]   Temperature field inversion of heat-source systems via physics-informed neural networks [J].
Liu, Xu ;
Peng, Wei ;
Gong, Zhiqiang ;
Zhou, Weien ;
Yao, Wen .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2022, 113
[46]   Physics-informed neural networks for studying heat transfer in porous media [J].
Xu, Jiaxuan ;
Wei, Han ;
Bao, Hua .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2023, 217
[47]   Advancements in Physics-Informed Neural Networks for Laminated Composites: A Comprehensive Review [J].
Khalid, Salman ;
Yazdani, Muhammad Haris ;
Azad, Muhammad Muzammil ;
Elahi, Muhammad Umar ;
Raouf, Izaz ;
Kim, Heung Soo .
MATHEMATICS, 2025, 13 (01)
[48]   Enhancing physics informed neural networks for solving Navier-Stokes equations [J].
Farkane, Ayoub ;
Ghogho, Mounir ;
Oudani, Mustapha ;
Boutayeb, Mohamed .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2024, 96 (04) :381-396
[49]   Physics-informed neural networks for gravity field modeling of small bodies [J].
John Martin ;
Hanspeter Schaub .
Celestial Mechanics and Dynamical Astronomy, 2022, 134
[50]   Combined analysis of thermofluids and electromagnetism using physics-informed neural networks [J].
Jeong, Yeonhwi ;
Jo, Junhyoung ;
Lee, Tonghun ;
Yoo, Jihyung .
ENGINEERING APPLICATIONS OF ARTIFICIAL INTELLIGENCE, 2024, 133