Physics informed neural networks for learning the horizon size in bond-based peridynamic models

被引:0
作者
V. Difonzo, Fabio [1 ,2 ]
Lopez, Luciano [3 ]
Pellegrino, Sabrina F. [4 ]
机构
[1] CNR, Ist Applicazioni Calcolo Mauro Picone, Via G Amendola 122-I, I-70126 Bari, Italy
[2] LUM Univ Giuseppe Degennaro, Dept Engn, SS 100 km 18, I-70010 Casamassima, BA, Italy
[3] Univ Studi Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[4] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Via E Orabona 4, I-70125 Bari, Italy
关键词
Physics informed neural network; Bond-based peridynamic theory; Horizon; OPTIMIZATION;
D O I
10.1016/j.cma.2024.117727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper broaches the peridynamic inverse problem of determining the horizon size of the kernel function in a one-dimensional model of a linear microelastic material. We explore different kernel functions, including V-shaped, distributed, and tent kernels. The paper presents numerical experiments using PINNs to learn the horizon parameter for problems in one and two spatial dimensions. The results demonstrate the effectiveness of PINNs in solving the peridynamic inverse problem, even in the presence of challenging kernel functions. We observe and prove a one-sided convergence behavior of the Stochastic Gradient Descent method towards a global minimum of the loss function, suggesting that the true value of the horizon parameter is an unstable equilibrium point for the PINN's gradient flow dynamics.
引用
收藏
页数:18
相关论文
共 50 条
[31]   Physics-informed neural networks for an optimal counterdiabatic quantum computation [J].
Ferrer-Sanchez, Antonio ;
Flores-Garrigos, Carlos ;
Hernani-Morales, Carlos ;
Orquin-Marques, Jose J. ;
Hegade, Narendra N. ;
Cadavid, Alejandro Gomez ;
Montalban, Iraitz ;
Solano, Enrique ;
Vives-Gilabert, Yolanda ;
Martin-Guerrero, Jose D. .
MACHINE LEARNING-SCIENCE AND TECHNOLOGY, 2024, 5 (02)
[32]   Distributed Bayesian Parameter Inference for Physics-Informed Neural Networks [J].
Bai, He ;
Bhar, Kinjal ;
George, Jemin ;
Busart, Carl .
2021 60TH IEEE CONFERENCE ON DECISION AND CONTROL (CDC), 2021, :2911-2916
[33]   Magnetic flux leakage defect size estimation method based on physics-informed neural network [J].
Xiong, Yi ;
Liu, Shuai ;
Hou, Litao ;
Zhou, Taotao .
PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2024, 382 (2264)
[34]   Heat Conduction Control Using Deep Q-Learning Approach with Physics-Informed Neural Networks [J].
Goncalves, Nelson D. ;
de Sa Rodrigues, Jhonny .
METROLOGY, 2024, 4 (03) :489-505
[35]   Physics-Informed Neural Networks-Based Online Excavation Trajectory Planning for Unmanned Excavator [J].
Fu, Tao ;
Hu, Zhengguo ;
Zhang, Tianci ;
Bi, Qiushi ;
Song, Xueguan .
CHINESE JOURNAL OF MECHANICAL ENGINEERING, 2024, 37 (01)
[36]   Temperature state prediction for lithium-ion batteries based on improved physics informed neural networks [J].
Wang, Yuchen ;
Xiong, Can ;
Wang, Yiming ;
Xu, Po ;
Ju, Changjiang ;
Shi, Jianghao ;
Yang, Genke ;
Chu, Jian .
JOURNAL OF ENERGY STORAGE, 2023, 73
[37]   Machine learning-based soil-structure interaction analysis of laterally loaded piles through physics-informed neural networks [J].
Ouyang, Weihang ;
Li, Guanhua ;
Chen, Liang ;
Liu, Si-Wei .
ACTA GEOTECHNICA, 2024, 19 (07) :4765-4790
[38]   A Fast Physics-informed Neural Network Based on Extreme Learning Machine for Solving Magnetostatic Problems [J].
Sato, Takahiro ;
Sasaki, Hidenori ;
Sato, Yuki .
2023 24TH INTERNATIONAL CONFERENCE ON THE COMPUTATION OF ELECTROMAGNETIC FIELDS, COMPUMAG, 2023,
[39]   Physics-informed neural networks for gravity field modeling of the Earth and Moon [J].
John Martin ;
Hanspeter Schaub .
Celestial Mechanics and Dynamical Astronomy, 2022, 134
[40]   UNDERSTANDING AND MITIGATING GRADIENT FLOW PATHOLOGIES IN PHYSICS-INFORMED NEURAL NETWORKS [J].
Wang, Sifan ;
Teng, Yujun ;
Perdikaris, Paris .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2021, 43 (05) :A3055-A3081