Physics informed neural networks for learning the horizon size in bond-based peridynamic models

被引:3
作者
V. Difonzo, Fabio [1 ,2 ]
Lopez, Luciano [3 ]
Pellegrino, Sabrina F. [4 ]
机构
[1] CNR, Ist Applicazioni Calcolo Mauro Picone, Via G Amendola 122-I, I-70126 Bari, Italy
[2] LUM Univ Giuseppe Degennaro, Dept Engn, SS 100 km 18, I-70010 Casamassima, BA, Italy
[3] Univ Studi Bari Aldo Moro, Dipartimento Matemat, Via E Orabona 4, I-70125 Bari, Italy
[4] Politecn Bari, Dipartimento Ingn Elettr & Informaz, Via E Orabona 4, I-70125 Bari, Italy
关键词
Physics informed neural network; Bond-based peridynamic theory; Horizon; OPTIMIZATION;
D O I
10.1016/j.cma.2024.117727
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This paper broaches the peridynamic inverse problem of determining the horizon size of the kernel function in a one-dimensional model of a linear microelastic material. We explore different kernel functions, including V-shaped, distributed, and tent kernels. The paper presents numerical experiments using PINNs to learn the horizon parameter for problems in one and two spatial dimensions. The results demonstrate the effectiveness of PINNs in solving the peridynamic inverse problem, even in the presence of challenging kernel functions. We observe and prove a one-sided convergence behavior of the Stochastic Gradient Descent method towards a global minimum of the loss function, suggesting that the true value of the horizon parameter is an unstable equilibrium point for the PINN's gradient flow dynamics.
引用
收藏
页数:18
相关论文
共 50 条
[21]   Improved Physics-Informed Neural Network based AC Power Flow for Distribution Networks [J].
Eeckhout, Victor ;
Fani, Hossein ;
Hashmi, Md Umar ;
Deconinck, Geert .
2024 IEEE PES INNOVATIVE SMART GRID TECHNOLOGIES EUROPE, ISGT EUROPE, 2024,
[22]   Solution approach of Burgers-Fisher equation based on physics-informed neural networks [J].
Xu J. ;
Zhu H.-L. ;
Zhu J.-L. ;
Li C.-Z. .
Zhejiang Daxue Xuebao (Gongxue Ban)/Journal of Zhejiang University (Engineering Science), 2023, 57 (11) :2160-2169
[23]   A coordinate transformation-based physics-informed neural networks for hyperbolic conservation laws [J].
Chen, Yuanhong ;
Gao, Zhen ;
Hesthaven, Jan S. ;
Lin, Yifan ;
Sun, Xiang .
JOURNAL OF COMPUTATIONAL PHYSICS, 2025, 538
[24]   Error homogenization in physics-informed neural networks for modeling in manufacturing [J].
Cooper, Clayton ;
Zhang, Jianjing ;
Gao, Robert X. .
JOURNAL OF MANUFACTURING SYSTEMS, 2023, 71 :298-308
[25]   Physics-Informed Neural Networks for AC Optimal Power Flow [J].
Nellikkath, Rahul ;
Chatzivasileiadis, Spyros .
ELECTRIC POWER SYSTEMS RESEARCH, 2022, 212
[26]   Physics-informed neural networks for quantum propagators in Wavepacket dynamics [J].
Zeng, Hao ;
Kou, Yitian ;
Sun, Xiang .
MOLECULAR PHYSICS, 2025,
[27]   Physics informed neural networks: A case study for gas transport problems [J].
Strelow, Erik Laurin ;
Gerisch, Alf ;
Lang, Jens ;
Pfetsch, Marc E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2023, 481
[28]   An Improved Method for Physics-Informed Neural Networks That Accelerates Convergence [J].
Yan, Liangliang ;
Zhou, You ;
Liu, Huan ;
Liu, Lingqi .
IEEE ACCESS, 2024, 12 :23943-23953
[29]   Solving PDEs on spheres with physics-informed convolutional neural networks [J].
Lei, Guanhang ;
Lei, Zhen ;
Shi, Lei ;
Zeng, Chenyu ;
Zhou, Ding-Xuan .
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2025, 74
[30]   Physics Informed Neural Networks for Baculovirus-Insect Cell System [J].
Masampally, Vishnu Swaroopji ;
Sharma, Surbhi ;
Giri, Lopamudra ;
Mitra, Kishalay .
2023 NINTH INDIAN CONTROL CONFERENCE, ICC, 2023, :22-27