Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease

被引:1
作者
Bolivar, Daniel A. [1 ]
Mosquera-Heredia, Maria I. [2 ]
Vidal, Oscar M. [2 ]
Barcelo, Ernesto [3 ,4 ,5 ]
Allegri, Ricardo [6 ]
Morales, Luis C. [2 ]
Silvera-Redondo, Carlos [2 ]
Arcos-Burgos, Mauricio [7 ]
Garavito-Galofre, Pilar [2 ]
Velez, Jorge I. [1 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Med, Barranquilla 081007, Colombia
[3] Inst Colombiano Neuropedag, Barranquilla 080020, Colombia
[4] Univ Costa, Dept Hlth Sci, Barranquilla 080002, Colombia
[5] Univ Costa, Grp Int Invest Neuroconductual GIINCO, Barranquilla 080002, Colombia
[6] Inst Neurol Res FLENI, Montaneses 2325,C1428AQK, Buenos Aires, Argentina
[7] Univ Antioquia, Fac Med, Dept Psiquiatria, Grp Invest Psiquiatria GIPSI,Inst Invest Med, Medellin 050010, Colombia
关键词
Alzheimer's disease; exosomes; mRNA; machine learning; personalized medicine; EXPRESSION; DIAGNOSIS;
D O I
10.3390/ijms252212293
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed that ENST00000331581 (CADM1) and ENST00000382258 (TNFRSF19) were significantly upregulated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (GABRB3), ENST00000278765 (GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and ENST00000636358 (ACY1), achieving > 90% accuracy in both training and testing datasets. For ADAOO, ENST00000340552 (LIMK2) expression correlated with a delay of similar to 12.6 years, while ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1), ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) emerged as the most important predictors. ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) showed promising predictive accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for early detection and monitoring. Further research is needed to validate these results in larger, diverse cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis.
引用
收藏
页数:21
相关论文
共 50 条
  • [21] Screening of Human Circular RNAs as Biomarkers for Early Onset Detection of Alzheimer's Disease
    Zheng, Da
    Tahir, Rana Adnan
    Yan, Yan
    Zhao, Juan
    Quan, Zhenzhen
    Kang, Guixia
    Han, Ying
    Qing, Hong
    FRONTIERS IN NEUROSCIENCE, 2022, 16
  • [22] Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease
    Ravi S. Pandey
    Leah Graham
    Asli Uyar
    Christoph Preuss
    Gareth R. Howell
    Gregory W. Carter
    Molecular Neurodegeneration, 14
  • [23] Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study
    Dage, Jeffrey
    Eloyan, Ani
    Thangarajah, Maryanne
    Hammers, Dustin B.
    Fagan, Anne M.
    Gray, Julia D.
    Schindler, Suzanne E.
    Snoddy, Casey
    Nudelman, Kelly N. H.
    Faber, Kelley M.
    Foroud, Tatiana
    Aisen, Paul
    Griffin, Percy T.
    Grinberg, Lea T.
    Iaccarino, Leonardo
    Kirby, Kala
    Kramer, Joel
    Koeppe, Robert A.
    Kukull, Walter A.
    La Joie, Renaud
    Mundada, Nidhi S.
    Murray, Melissa E.
    Rumbaugh, Malia
    Soleimani-Meigooni, David N.
    Toga, Arthur W.
    Touroutoglou, Alexandra
    Vemuri, Prashanthi
    Atri, Alireza A.
    Beckett, Laurel A.
    Day, Gregory S.
    Graff-Radford, Neill R.
    Duara, Ranjan S.
    Honig, Lawrence S.
    Jones, David T.
    Masdeu, Joseph C.
    Mendez, Mario F.
    Musiek, Erik
    Onyike, Chiadi U.
    Riddle, Meghan
    Rogalski, Emily
    Salloway, Stephen
    Sha, Sharon J.
    Turner, Raymond S.
    Wingo, Thomas S.
    Wolk, David A.
    Womack, Kyle B.
    Carrillo, Maria C.
    Dickerson, Bradford C.
    Rabinovici, Gil D.
    Apostolova, Liana G.
    ALZHEIMERS & DEMENTIA, 2023, 19 : S115 - S125
  • [24] Circulating miRNAs as Potential Biomarkers in Alzheimer's Disease
    Galimberti, Daniela
    Villa, Chiara
    Fenoglio, Chiara
    Serpente, Maria
    Ghezzi, Laura
    Cioffi, Sara M. G.
    Arighi, Andrea
    Fumagalli, Giorgio
    Scarpini, Elio
    JOURNAL OF ALZHEIMERS DISEASE, 2014, 42 (04) : 1261 - 1267
  • [25] A Neuron-Glial Model of Exosomal Release in the Onset and Progression of Alzheimer's Disease
    Shaheen, Hina
    Singh, Sundeep
    Melnik, Roderick
    FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
  • [26] Biofluid biomarkers for Alzheimer's disease
    Wang, Sensen
    Xie, Sitan
    Zheng, Qinpin
    Zhang, Zhihui
    Wang, Tian
    Zhang, Guirong
    FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
  • [27] Imaging and biomarkers for Alzheimer's disease
    Allan, Charlotte L.
    Sexton, Claire E.
    Welchew, David
    Ebmeier, Klaus P.
    MATURITAS, 2010, 65 (02) : 138 - 142
  • [28] Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia
    Tan, Yi Jayne
    Wong, Benjamin Y. X.
    Vaidyanathan, Ramanathan
    Sreejith, Sivaramapanicker
    Chia, Sook Yoong
    Kandiah, Nagaendran
    Ng, Adeline S. L.
    Zeng, Li
    JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2021, 5 (01) : 805 - 813
  • [29] Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk
    Efthymiou, Anastasia G.
    Goate, Alison M.
    MOLECULAR NEURODEGENERATION, 2017, 12
  • [30] Mutations Modifying Sporadic Alzheimer's Disease Age of Onset
    Velez, Jorge I.
    Lopera, Francisco
    Patel, Hardip R.
    Johar, Angad S.
    Cai, Yeping
    Rivera, Dora
    Tobon, Carlos
    Villegas, Andres
    Sepulveda-Falla, Diego
    Lehmann, Shaun G.
    Easteal, Simon
    Mastronardi, Claudio A.
    Arcos-Burgos, Mauricio
    AMERICAN JOURNAL OF MEDICAL GENETICS PART B-NEUROPSYCHIATRIC GENETICS, 2016, 171 (08) : 1116 - 1130