Exosomal mRNA Signatures as Predictive Biomarkers for Risk and Age of Onset in Alzheimer's Disease

被引:3
作者
Bolivar, Daniel A. [1 ]
Mosquera-Heredia, Maria I. [2 ]
Vidal, Oscar M. [2 ]
Barcelo, Ernesto [3 ,4 ,5 ]
Allegri, Ricardo [6 ]
Morales, Luis C. [2 ]
Silvera-Redondo, Carlos [2 ]
Arcos-Burgos, Mauricio [7 ]
Garavito-Galofre, Pilar [2 ]
Velez, Jorge I. [1 ]
机构
[1] Univ Norte, Dept Ind Engn, Barranquilla 081007, Colombia
[2] Univ Norte, Dept Med, Barranquilla 081007, Colombia
[3] Inst Colombiano Neuropedag, Barranquilla 080020, Colombia
[4] Univ Costa, Dept Hlth Sci, Barranquilla 080002, Colombia
[5] Univ Costa, Grp Int Invest Neuroconductual GIINCO, Barranquilla 080002, Colombia
[6] Inst Neurol Res FLENI, Montaneses 2325,C1428AQK, Buenos Aires, Argentina
[7] Univ Antioquia, Fac Med, Dept Psiquiatria, Grp Invest Psiquiatria GIPSI,Inst Invest Med, Medellin 050010, Colombia
关键词
Alzheimer's disease; exosomes; mRNA; machine learning; personalized medicine; EXPRESSION; DIAGNOSIS;
D O I
10.3390/ijms252212293
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Alzheimer's disease (AD) is a neurodegenerative disorder characterized by progressive cognitive decline and memory loss. While the precise causes of AD remain unclear, emerging evidence suggests that messenger RNA (mRNA) dysregulation contributes to AD pathology and risk. This study examined exosomal mRNA expression profiles of 15 individuals diagnosed with AD and 15 healthy controls from Barranquilla, Colombia. Utilizing advanced bioinformatics and machine learning (ML) techniques, we identified differentially expressed mRNAs and assessed their predictive power for AD diagnosis and AD age of onset (ADAOO). Our results showed that ENST00000331581 (CADM1) and ENST00000382258 (TNFRSF19) were significantly upregulated in AD patients. Key predictors for AD diagnosis included ENST00000311550 (GABRB3), ENST00000278765 (GGTLC1), ENST00000331581 (CADM1), ENST00000372572 (FOXJ3), and ENST00000636358 (ACY1), achieving > 90% accuracy in both training and testing datasets. For ADAOO, ENST00000340552 (LIMK2) expression correlated with a delay of similar to 12.6 years, while ENST00000304677 (RNASE6), ENST00000640218 (HNRNPU), ENST00000602017 (PPP5D1), ENST00000224950 (STN1), and ENST00000322088 (PPP2R1A) emerged as the most important predictors. ENST00000304677 (RNASE6) and ENST00000602017 (PPP5D1) showed promising predictive accuracy in unseen data. These findings suggest that mRNA expression profiles may serve as effective biomarkers for AD diagnosis and ADAOO, providing a cost-efficient and minimally invasive tool for early detection and monitoring. Further research is needed to validate these results in larger, diverse cohorts and explore the biological roles of the identified mRNAs in AD pathogenesis.
引用
收藏
页数:21
相关论文
共 50 条
[21]   Age at onset is associated with disease severity in Lewy body variant and Alzheimer's disease [J].
Ho, GJ ;
Hansen, LA ;
Alford, MF ;
Foster, K ;
Salmon, DR ;
Galasko, D ;
Thal, LJ ;
Masliah, E .
NEUROREPORT, 2002, 13 (14) :1825-1828
[22]   Screening of Human Circular RNAs as Biomarkers for Early Onset Detection of Alzheimer's Disease [J].
Zheng, Da ;
Tahir, Rana Adnan ;
Yan, Yan ;
Zhao, Juan ;
Quan, Zhenzhen ;
Kang, Guixia ;
Han, Ying ;
Qing, Hong .
FRONTIERS IN NEUROSCIENCE, 2022, 16
[23]   Cerebrospinal fluid biomarkers in the Longitudinal Early-onset Alzheimer's Disease Study [J].
Dage, Jeffrey ;
Eloyan, Ani ;
Thangarajah, Maryanne ;
Hammers, Dustin B. ;
Fagan, Anne M. ;
Gray, Julia D. ;
Schindler, Suzanne E. ;
Snoddy, Casey ;
Nudelman, Kelly N. H. ;
Faber, Kelley M. ;
Foroud, Tatiana ;
Aisen, Paul ;
Griffin, Percy T. ;
Grinberg, Lea T. ;
Iaccarino, Leonardo ;
Kirby, Kala ;
Kramer, Joel ;
Koeppe, Robert A. ;
Kukull, Walter A. ;
La Joie, Renaud ;
Mundada, Nidhi S. ;
Murray, Melissa E. ;
Rumbaugh, Malia ;
Soleimani-Meigooni, David N. ;
Toga, Arthur W. ;
Touroutoglou, Alexandra ;
Vemuri, Prashanthi ;
Atri, Alireza A. ;
Beckett, Laurel A. ;
Day, Gregory S. ;
Graff-Radford, Neill R. ;
Duara, Ranjan S. ;
Honig, Lawrence S. ;
Jones, David T. ;
Masdeu, Joseph C. ;
Mendez, Mario F. ;
Musiek, Erik ;
Onyike, Chiadi U. ;
Riddle, Meghan ;
Rogalski, Emily ;
Salloway, Stephen ;
Sha, Sharon J. ;
Turner, Raymond S. ;
Wingo, Thomas S. ;
Wolk, David A. ;
Womack, Kyle B. ;
Carrillo, Maria C. ;
Dickerson, Bradford C. ;
Rabinovici, Gil D. ;
Apostolova, Liana G. .
ALZHEIMERS & DEMENTIA, 2023, 19 :S115-S125
[24]   Genetic perturbations of disease risk genes in mice capture transcriptomic signatures of late-onset Alzheimer’s disease [J].
Ravi S. Pandey ;
Leah Graham ;
Asli Uyar ;
Christoph Preuss ;
Gareth R. Howell ;
Gregory W. Carter .
Molecular Neurodegeneration, 14
[25]   Circulating miRNAs as Potential Biomarkers in Alzheimer's Disease [J].
Galimberti, Daniela ;
Villa, Chiara ;
Fenoglio, Chiara ;
Serpente, Maria ;
Ghezzi, Laura ;
Cioffi, Sara M. G. ;
Arighi, Andrea ;
Fumagalli, Giorgio ;
Scarpini, Elio .
JOURNAL OF ALZHEIMERS DISEASE, 2014, 42 (04) :1261-1267
[26]   A Neuron-Glial Model of Exosomal Release in the Onset and Progression of Alzheimer's Disease [J].
Shaheen, Hina ;
Singh, Sundeep ;
Melnik, Roderick .
FRONTIERS IN COMPUTATIONAL NEUROSCIENCE, 2021, 15
[27]   Biofluid biomarkers for Alzheimer's disease [J].
Wang, Sensen ;
Xie, Sitan ;
Zheng, Qinpin ;
Zhang, Zhihui ;
Wang, Tian ;
Zhang, Guirong .
FRONTIERS IN AGING NEUROSCIENCE, 2024, 16
[28]   Imaging and biomarkers for Alzheimer's disease [J].
Allan, Charlotte L. ;
Sexton, Claire E. ;
Welchew, David ;
Ebmeier, Klaus P. .
MATURITAS, 2010, 65 (02) :138-142
[29]   Late onset Alzheimer's disease genetics implicates microglial pathways in disease risk [J].
Efthymiou, Anastasia G. ;
Goate, Alison M. .
MOLECULAR NEURODEGENERATION, 2017, 12
[30]   Altered Cerebrospinal Fluid Exosomal microRNA Levels in Young-Onset Alzheimer's Disease and Frontotemporal Dementia [J].
Tan, Yi Jayne ;
Wong, Benjamin Y. X. ;
Vaidyanathan, Ramanathan ;
Sreejith, Sivaramapanicker ;
Chia, Sook Yoong ;
Kandiah, Nagaendran ;
Ng, Adeline S. L. ;
Zeng, Li .
JOURNAL OF ALZHEIMERS DISEASE REPORTS, 2021, 5 (01) :805-813