REGULARIZATION BY NOISE FOR ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY GAUSSIAN ROUGH PATHS

被引:0
|
作者
Catellier, Remi [1 ]
Duboscq, Romain [2 ,3 ,4 ]
机构
[1] Univ Cote Azur, CNRS, Inria, LJAD, Nice, France
[2] IMT, Paris, France
[3] Univ Toulouse, UMR5219, Toulouse, France
[4] INSA IMT, CNRS, Paris, France
来源
ANNALS OF PROBABILITY | 2025年 / 53卷 / 01期
关键词
Rough paths; regularization by noise; Malliavin calculus; MULTIPLICATIVE NOISE; INTEGRABILITY;
D O I
10.1214/24-AOP1701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the rough differential equation with drift driven by a Gaussian geometric rough path. Under natural conditions on the rough path, namely nondeterminism, and uniform ellipticity conditions on the diffusion coefficient, we prove path-by-path well-posedness of the equation for poorly regular drifts. In the case of the fractional Brownian motion B(H )for H > (1) (4), we prove that the drift may be taken to be kappa > 0 H & ouml;lder continuous and bounded for kappa > (3)(2) - (1) (2H) . A flow transform of the equation and Malliavin 1 calculus for Gaussian rough paths are used to achieve such a result.
引用
收藏
页码:79 / 139
页数:61
相关论文
共 50 条
  • [31] Space-time fractional Anderson model driven by Gaussian noise rough in space
    Liu, Junfeng
    Wang, Zhi
    Wang, Zengwu
    STOCHASTICS AND DYNAMICS, 2023, 23 (01)
  • [32] Differential structure and flow equations on rough path space
    Qian, Zhongmin
    Tudor, Jan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2011, 135 (6-7): : 695 - 732
  • [33] Smooth Density for Some Nilpotent Rough Differential Equations
    Yaozhong Hu
    Samy Tindel
    Journal of Theoretical Probability, 2013, 26 : 722 - 749
  • [34] Solving linear parabolic rough partial differential equations
    Bayer, Christian
    Belomestny, Denis
    Redmann, Martin
    Riedel, Sebastian
    Schoenmakers, John
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2020, 490 (01)
  • [35] Smooth Density for Some Nilpotent Rough Differential Equations
    Hu, Yaozhong
    Tindel, Samy
    JOURNAL OF THEORETICAL PROBABILITY, 2013, 26 (03) : 722 - 749
  • [36] Stochastic scalar conservation laws driven by rough paths
    Friz, Peter K.
    Gess, Benjamin
    ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (04): : 933 - 963
  • [37] Small ball probabilities, metric entropy and Gaussian rough paths
    Salkeld, William
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2022, 506 (02)
  • [38] A STRATONOVICH-SKOROHOD INTEGRAL FORMULA FOR GAUSSIAN ROUGH PATHS
    Cass, Thomas
    Lim, Nengli
    ANNALS OF PROBABILITY, 2019, 47 (01): : 1 - 60
  • [39] SENSITIVITIES VIA ROUGH PATHS
    Marie, Nicolas
    ESAIM-PROBABILITY AND STATISTICS, 2015, 19 : 515 - 543
  • [40] Regularization of differential equations by fractional noise
    Nualart, D
    Ouknine, Y
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 2002, 102 (01) : 103 - 116