REGULARIZATION BY NOISE FOR ROUGH DIFFERENTIAL EQUATIONS DRIVEN BY GAUSSIAN ROUGH PATHS

被引:0
|
作者
Catellier, Remi [1 ]
Duboscq, Romain [2 ,3 ,4 ]
机构
[1] Univ Cote Azur, CNRS, Inria, LJAD, Nice, France
[2] IMT, Paris, France
[3] Univ Toulouse, UMR5219, Toulouse, France
[4] INSA IMT, CNRS, Paris, France
来源
ANNALS OF PROBABILITY | 2025年 / 53卷 / 01期
关键词
Rough paths; regularization by noise; Malliavin calculus; MULTIPLICATIVE NOISE; INTEGRABILITY;
D O I
10.1214/24-AOP1701
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We consider the rough differential equation with drift driven by a Gaussian geometric rough path. Under natural conditions on the rough path, namely nondeterminism, and uniform ellipticity conditions on the diffusion coefficient, we prove path-by-path well-posedness of the equation for poorly regular drifts. In the case of the fractional Brownian motion B(H )for H > (1) (4), we prove that the drift may be taken to be kappa > 0 H & ouml;lder continuous and bounded for kappa > (3)(2) - (1) (2H) . A flow transform of the equation and Malliavin 1 calculus for Gaussian rough paths are used to achieve such a result.
引用
收藏
页码:79 / 139
页数:61
相关论文
共 50 条
  • [21] Rough differential equations with unbounded drift term
    Riedel, S.
    Scheutzow, M.
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (01) : 283 - 312
  • [22] Sensitivity of rough differential equations: An approach through the Omega lemma
    Coutin, Laure
    Lejay, Antoine
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2018, 264 (06) : 3899 - 3917
  • [23] Skorohod and rough integration for stochastic differential equations driven by Volterra processes
    Cass, Thomas
    Lim, Nengli
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2021, 57 (01): : 132 - 168
  • [24] Smoothing effect of rough differential equations driven by fractional Brownian motions
    Baudoin, Fabrice
    Ouyang, Cheng
    Zhang, Xuejing
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 2016, 52 (01): : 412 - 428
  • [25] REGULARITY OF LAWS AND ERGODICITY OF HYPOELLIPTIC SDES DRIVEN BY ROUGH PATHS
    Hairer, Martin
    Pillai, Natesh S.
    ANNALS OF PROBABILITY, 2013, 41 (04): : 2544 - 2598
  • [26] Exact convergence rate of the Wong-Zakai approximation to RDEs driven by Gaussian rough paths
    Naganuma, Nobuaki
    STOCHASTICS-AN INTERNATIONAL JOURNAL OF PROBABILITY AND STOCHASTIC REPORTS, 2016, 88 (07): : 1041 - 1059
  • [27] Positivity of the Density for Rough Differential Equations
    Inahama, Yuzuru
    Pei, Bin
    JOURNAL OF THEORETICAL PROBABILITY, 2022, 35 (03) : 1863 - 1877
  • [28] Positivity of the Density for Rough Differential Equations
    Yuzuru Inahama
    Bin Pei
    Journal of Theoretical Probability, 2022, 35 : 1863 - 1877
  • [29] Existence and Regularity of Random Attractors for Stochastic Evolution Equations Driven by Rough Noise
    Neamtu, Alexandra Blessing
    Seitz, Tim
    JOURNAL OF DYNAMICS AND DIFFERENTIAL EQUATIONS, 2024,
  • [30] PARAMETER ESTIMATION FOR ROUGH DIFFERENTIAL EQUATIONS
    Papavasiliou, Anastasia
    Ladroue, Christophe
    ANNALS OF STATISTICS, 2011, 39 (04): : 2047 - 2073